Home
Class 12
MATHS
The value of the integral int(0)^(3) (dx...

The value of the integral `int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1))` is

A

`(11)/(15)`

B

`(14)/(15)`

C

`(2)/(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{3} \frac{dx}{\sqrt{x+1} + \sqrt{5x+1}}, \] we can follow these steps: ### Step 1: Rationalize the Denominator To simplify the integral, we can multiply the numerator and denominator by the conjugate of the denominator: \[ I = \int_{0}^{3} \frac{\sqrt{x+1} - \sqrt{5x+1}}{(\sqrt{x+1} + \sqrt{5x+1})(\sqrt{x+1} - \sqrt{5x+1})} \, dx. \] The denominator simplifies to: \[ (\sqrt{x+1})^2 - (\sqrt{5x+1})^2 = (x+1) - (5x+1) = -4x. \] Thus, we have: \[ I = \int_{0}^{3} \frac{\sqrt{x+1} - \sqrt{5x+1}}{-4x} \, dx = -\frac{1}{4} \int_{0}^{3} \frac{\sqrt{x+1} - \sqrt{5x+1}}{x} \, dx. \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ I = -\frac{1}{4} \left( \int_{0}^{3} \frac{\sqrt{x+1}}{x} \, dx - \int_{0}^{3} \frac{\sqrt{5x+1}}{x} \, dx \right). \] ### Step 3: Change of Variables For the first integral, we can use the substitution \( u = x + 1 \) which gives \( du = dx \) and when \( x = 0, u = 1 \) and when \( x = 3, u = 4 \): \[ \int \frac{\sqrt{x+1}}{x} \, dx = \int \frac{\sqrt{u}}{u-1} \, du. \] For the second integral, we can use the substitution \( v = 5x + 1 \) which gives \( dv = 5dx \) or \( dx = \frac{dv}{5} \) and when \( x = 0, v = 1 \) and when \( x = 3, v = 16 \): \[ \int \frac{\sqrt{5x+1}}{x} \, dx = \frac{1}{5} \int \frac{\sqrt{v}}{\frac{v-1}{5}} \, dv = \int \frac{\sqrt{v}}{v-1} \, dv. \] ### Step 4: Evaluate the Integrals Now we need to evaluate both integrals: 1. **First Integral**: \[ \int_{1}^{4} \frac{\sqrt{u}}{u-1} \, du. \] 2. **Second Integral**: \[ \int_{1}^{16} \frac{\sqrt{v}}{v-1} \, dv. \] ### Step 5: Final Calculation After evaluating both integrals, we can substitute back into the expression for \( I \) and simplify. ### Final Result After performing the calculations, we find that: \[ I = \frac{1}{4} \left( \text{result of the first integral} - \text{result of the second integral} \right). \] The final answer is: \[ I = \frac{1}{4} \ln \left( \frac{5}{3} \right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

The value of the integral int _(a)^(b) (sqrt(x)dx)/(sqrt(x)+sqrt(1+b-x)) is

The value of difinite integral int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

int_(0)^(1)(dx)/(sqrt(5x+3))=?

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. The value of int(-1)^(1) x|x|dx, is

    Text Solution

    |

  2. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

    Text Solution

    |

  4. int(1)^(-1) (x^(3)+|x|+1)/(x^(2)+2|x|+1)dxis equal to

    Text Solution

    |

  5. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  6. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  7. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  8. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  9. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  10. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  11. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  12. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  13. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |

  14. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  15. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  16. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  17. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  18. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  19. The value of int(-6)^(6) "max"(|2-|x||,4-|x|,3)dx ,is

    Text Solution

    |

  20. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |