Home
Class 12
MATHS
int(1)^(-1) (x^(3)+|x|+1)/(x^(2)+2|x|+1)...

`int_(1)^(-1) (x^(3)+|x|+1)/(x^(2)+2|x|+1)dx`is equal to

A

In 3

B

2 In 3

C

`(1)/(2)` In 3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx, \] we can utilize the properties of definite integrals, particularly the property concerning even and odd functions. ### Step 1: Analyze the function First, we need to determine if the integrand is an even function or an odd function. - **Odd Function**: A function \( f(x) \) is odd if \( f(-x) = -f(x) \). - **Even Function**: A function \( f(x) \) is even if \( f(-x) = f(x) \). ### Step 2: Substitute \( -x \) Let's evaluate \( f(-x) \): \[ f(-x) = \frac{(-x)^3 + |-x| + 1}{(-x)^2 + 2|-x| + 1} = \frac{-x^3 + |x| + 1}{x^2 + 2|x| + 1}. \] ### Step 3: Compare \( f(-x) \) and \( f(x) \) Now we compare \( f(-x) \) with \( -f(x) \): \[ -f(x) = -\frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} = \frac{-x^3 - |x| - 1}{x^2 + 2|x| + 1}. \] ### Step 4: Check if \( f(-x) = -f(x) \) To check if \( f(-x) = -f(x) \): \[ f(-x) = \frac{-x^3 + |x| + 1}{x^2 + 2|x| + 1} \quad \text{and} \quad -f(x) = \frac{-x^3 - |x| - 1}{x^2 + 2|x| + 1}. \] Clearly, \( f(-x) \neq -f(x) \) since the terms do not match. ### Step 5: Check if \( f(-x) = f(x) \) Now, let's check if \( f(-x) = f(x) \): From our previous calculations, we see that: \[ f(-x) = \frac{-x^3 + |x| + 1}{x^2 + 2|x| + 1} \quad \text{and} \quad f(x) = \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1}. \] Again, \( f(-x) \neq f(x) \). ### Step 6: Split the integral Since the function is neither even nor odd, we can split the integral into two parts: \[ I = \int_{-1}^{0} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx + \int_{0}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} \, dx. \] ### Step 7: Evaluate each integral For \( x \in [-1, 0] \), \( |x| = -x \): \[ \int_{-1}^{0} \frac{x^3 - x + 1}{x^2 - 2x + 1} \, dx = \int_{-1}^{0} \frac{x^3 - x + 1}{(x-1)^2} \, dx. \] For \( x \in [0, 1] \), \( |x| = x \): \[ \int_{0}^{1} \frac{x^3 + x + 1}{x^2 + 2x + 1} \, dx = \int_{0}^{1} \frac{x^3 + x + 1}{(x+1)^2} \, dx. \] ### Step 8: Combine results Now we can evaluate both integrals separately and combine the results to find the value of \( I \). ### Final Result After evaluating both integrals, we find: \[ I = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

The value of int_(-1)^(1)((x^(2)+sin x)/(1+x^(2)))dx is equal to

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

int_(-1)^(1)(x^(2)+x)/(x^(2)+1)dx=

Evaluate: int_(-1)^(1)(x^(3)+|x|+1)/(x^(2)+2|x|+1)dx

int_(1)^(2)|x-1|dx is equal to

int(1+x^(2))/(x)dx is equal to:

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(x^(2)+1)/(x)dx is equal to -

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

    Text Solution

    |

  3. int(1)^(-1) (x^(3)+|x|+1)/(x^(2)+2|x|+1)dxis equal to

    Text Solution

    |

  4. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  5. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  6. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  7. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  8. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  9. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  10. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  11. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  12. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |

  13. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  14. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  15. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  16. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  17. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  18. The value of int(-6)^(6) "max"(|2-|x||,4-|x|,3)dx ,is

    Text Solution

    |

  19. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  20. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |