Home
Class 12
MATHS
The value of int(-6)^(6) "max"(|2-|x||,4...

The value of `int_(-6)^(6) "max"(|2-|x||,4-|x|,3)dx` ,is

A

40

B

50

C

1

D

`(2)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-6}^{6} \max(|2 - |x||, 4 - |x|, 3) \, dx \), we will first analyze the functions involved in the maximum and determine the intervals where each function is the maximum. ### Step 1: Identify the Functions We have three functions: 1. \( f_1(x) = |2 - |x|| \) 2. \( f_2(x) = 4 - |x| \) 3. \( f_3(x) = 3 \) ### Step 2: Analyze Each Function 1. **For \( f_1(x) = |2 - |x|| \)**: - This function changes at \( |x| = 2 \), giving us points \( x = -2 \) and \( x = 2 \). - For \( |x| < 2 \), \( f_1(x) = 2 - |x| \). - For \( |x| \geq 2 \), \( f_1(x) = |x| - 2 \). 2. **For \( f_2(x) = 4 - |x| \)**: - This function changes at \( |x| = 4 \), giving us points \( x = -4 \) and \( x = 4 \). - For \( |x| < 4 \), \( f_2(x) = 4 - |x| \). - For \( |x| \geq 4 \), \( f_2(x) \) becomes negative. 3. **For \( f_3(x) = 3 \)**: - This is a constant function. ### Step 3: Determine Intervals We will analyze the maximum function in the intervals determined by the critical points \( -6, -4, -2, 2, 4, 6 \). 1. **Interval \( [-6, -4] \)**: - Here, \( |x| \geq 4 \), thus \( f_1(x) = |x| - 2 \), \( f_2(x) < 0 \), and \( f_3(x) = 3 \). - Maximum: \( \max(f_1(x), f_2(x), f_3(x)) = f_1(x) \). 2. **Interval \( [-4, -2] \)**: - Here, \( |x| < 4 \) and \( |x| \geq 2 \), thus \( f_1(x) = |x| - 2 \), \( f_2(x) = 4 - |x| \), and \( f_3(x) = 3 \). - Maximum: Compare \( f_1 \) and \( f_2 \): - At \( x = -4 \): \( f_1(-4) = 2 \), \( f_2(-4) = 0 \), \( f_3 = 3 \) → Maximum is \( 3 \). - At \( x = -2 \): \( f_1(-2) = 0 \), \( f_2(-2) = 2 \), \( f_3 = 3 \) → Maximum is \( 3 \). - Maximum: \( f_3(x) = 3 \). 3. **Interval \( [-2, 2] \)**: - Here, \( |x| < 2 \), thus \( f_1(x) = 2 - |x| \), \( f_2(x) = 4 - |x| \), and \( f_3(x) = 3 \). - Compare \( f_1 \) and \( f_2 \): - At \( x = 0 \): \( f_1(0) = 2 \), \( f_2(0) = 4 \), \( f_3 = 3 \) → Maximum is \( 4 \). - Maximum: \( f_2(x) = 4 \). 4. **Interval \( [2, 4] \)**: - Here, \( |x| < 4 \) and \( |x| \geq 2 \), thus \( f_1(x) = 2 - |x| \), \( f_2(x) = 4 - |x| \), and \( f_3(x) = 3 \). - Compare \( f_1 \) and \( f_2 \): - At \( x = 2 \): \( f_1(2) = 0 \), \( f_2(2) = 2 \), \( f_3 = 3 \) → Maximum is \( 3 \). - At \( x = 4 \): \( f_1(4) = 2 \), \( f_2(4) = 0 \), \( f_3 = 3 \) → Maximum is \( 3 \). - Maximum: \( f_3(x) = 3 \). 5. **Interval \( [4, 6] \)**: - Here, \( |x| \geq 4 \), thus \( f_1(x) = |x| - 2 \), \( f_2(x) < 0 \), and \( f_3(x) = 3 \). - Maximum: \( \max(f_1(x), f_2(x), f_3(x)) = f_1(x) \). ### Step 4: Set Up the Integral Now we can set up the integral based on the maximum function in each interval: \[ \int_{-6}^{-4} (|x| - 2) \, dx + \int_{-4}^{-2} 3 \, dx + \int_{-2}^{2} (4 - |x|) \, dx + \int_{2}^{4} 3 \, dx + \int_{4}^{6} (|x| - 2) \, dx \] ### Step 5: Calculate Each Integral 1. **Integral from \(-6\) to \(-4\)**: \[ \int_{-6}^{-4} (|x| - 2) \, dx = \int_{-6}^{-4} (6 - 2) \, dx = \int_{-6}^{-4} 4 \, dx = 4 \times (2) = 8 \] 2. **Integral from \(-4\) to \(-2\)**: \[ \int_{-4}^{-2} 3 \, dx = 3 \times (2) = 6 \] 3. **Integral from \(-2\) to \(2\)**: \[ \int_{-2}^{2} (4 - |x|) \, dx = \int_{-2}^{0} (4 + x) \, dx + \int_{0}^{2} (4 - x) \, dx \] - First part: \[ \int_{-2}^{0} (4 + x) \, dx = \left[ 4x + \frac{x^2}{2} \right]_{-2}^{0} = (0) - ( -8 + 2) = 6 \] - Second part: \[ \int_{0}^{2} (4 - x) \, dx = \left[ 4x - \frac{x^2}{2} \right]_{0}^{2} = (8 - 2) - 0 = 6 \] - Total: \[ 6 + 6 = 12 \] 4. **Integral from \(2\) to \(4\)**: \[ \int_{2}^{4} 3 \, dx = 3 \times (2) = 6 \] 5. **Integral from \(4\) to \(6\)**: \[ \int_{4}^{6} (|x| - 2) \, dx = \int_{4}^{6} (x - 2) \, dx = \left[ \frac{x^2}{2} - 2x \right]_{4}^{6} = \left( 18 - 12 \right) - \left( 8 - 8 \right) = 6 \] ### Step 6: Combine All Integrals Now, we can combine all the results: \[ 8 + 6 + 12 + 6 + 6 = 38 \] ### Final Answer The value of the integral is \( \boxed{38} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1) max[2-x,2,1+x] dx is

Evaluate : int_(-6)^(3)|x+3|dx

Evaluate: int_(-6)^(3)|x+3|dx

Evaluate: int_(-6)^(3)|x+3|dx

The value of integrals int_(-2)^(2)max {x+|x|, x-[x]}dx where [.] represents the greatest integer function is

The value of int_(3)^(5) (x^(2))/(x^(2)-4) dx, is

The value of int_(3)^(5)(x^(2))/(x^(2)-4) dx is

int_(1)^(6)(3x-2)dx

"Evaluate:" int_(-6)^(3)|x+3|dx

The value of int_(2)^(3)(x-2)^(5)(3-x)^(6)dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. The value of int(-6)^(6) "max"(|2-|x||,4-|x|,3)dx ,is

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f(x)be a differentiable function such that f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  19. Let f(x) be a differentiable function satisfying f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2[x])/(3x-[x])|)/(((2[x])/(3...

    Text Solution

    |