Home
Class 12
MATHS
Given that lim(n to oo)sum(r=1)^(n)(lo...

Given that
`lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2`, then
`lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n)` is equal to

A

`2^(m)e^(m((pi)/(2)-2))`

B

`2^(m)e^(m(2-(pi)/(2)))`

C

`e^m((pi)/(2)-2)`

D

`e^(2m((pi)/(2)-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the limit and the summation provided. ### Step 1: Understanding the Given Limit We start with the limit: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[(n^2 + 1^2)^m (n^2 + r^2)^m \cdots (n^2)^m\right]^{\frac{1}{n}} \] This expression involves a product of terms raised to the power \( m \) and then taken to the \( \frac{1}{n} \) power. ### Step 2: Rewriting the Expression We can rewrite the expression inside the limit: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[(n^2 + 1^2)(n^2 + 2^2) \cdots (n^2 + n^2)\right]^m \] This means we need to analyze the product: \[ (n^2 + 1^2)(n^2 + 2^2) \cdots (n^2 + n^2) \] ### Step 3: Factor Out \( n^2 \) Notice that each term can be factored as: \[ n^2 + r^2 = n^2(1 + \frac{r^2}{n^2}) \] Thus, we can express the product as: \[ \prod_{r=1}^{n} (n^2 + r^2) = n^{2n} \prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right) \] ### Step 4: Substitute Back into the Limit Substituting this back into our limit gives: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} \left[n^{2n} \prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right)\right]^m \] This simplifies to: \[ \lim_{n \to \infty} n^{2n \cdot m - 2m} \left(\prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right)\right)^m \] ### Step 5: Analyze the Product The product \( \prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right) \) can be approximated using the logarithm: \[ \log \left(\prod_{r=1}^{n} \left(1 + \frac{r^2}{n^2}\right)\right) = \sum_{r=1}^{n} \log\left(1 + \frac{r^2}{n^2}\right) \] As \( n \to \infty \), this sum can be approximated by an integral: \[ \sum_{r=1}^{n} \log\left(1 + \frac{r^2}{n^2}\right) \sim n \int_0^1 \log(1 + x^2) \, dx \] ### Step 6: Final Limit Calculation Thus, we have: \[ \lim_{n \to \infty} \frac{1}{n^{2m}} n^{2n \cdot m - 2m} e^{m \cdot n \int_0^1 \log(1 + x^2) \, dx} \] The limit simplifies to: \[ e^{m \cdot n \int_0^1 \log(1 + x^2) \, dx} \text{ as } n \to \infty \] ### Step 7: Conclusion The final result is: \[ 2^m e^{m \cdot \left(\frac{\pi}{2} - 2\right)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

Given that lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2)) , lim_(n to oo) (1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]^(1//n) , is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. The value of int(-6)^(6) "max"(|2-|x||,4-|x|,3)dx ,is

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f(x)be a differentiable function such that f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  19. Let f(x) be a differentiable function satisfying f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2[x])/(3x-[x])|)/(((2[x])/(3...

    Text Solution

    |