Home
Class 12
MATHS
The value of the integral int(-10)^(0) (...

The value of the integral `int_(-10)^(0) (|(2[x])/(3x-[x])|)/(((2[x])/(3x-[x])))dx` where [.] denotes GIF

A

`(28)/(3)`

B

0

C

10

D

-10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-10}^{0} \frac{|\frac{2[x]}{3x - [x]}|}{\frac{2[x]}{3x - [x]}} \, dx, \] where \([x]\) denotes the greatest integer function (GIF), we will break down the integral into manageable parts. ### Step 1: Break down the integral We can break the integral into intervals where the behavior of the greatest integer function \([x]\) is constant. The intervals will be: - From \(-10\) to \(-9\) - From \(-9\) to \(-8\) - From \(-8\) to \(-7\) - From \(-7\) to \(-6\) - From \(-6\) to \(-5\) - From \(-5\) to \(-4\) - From \(-4\) to \(-3\) - From \(-3\) to \(-2\) - From \(-2\) to \(-1\) - From \(-1\) to \(0\) Thus, we can express the integral as: \[ I = \sum_{n=-10}^{-1} \int_{n}^{n+1} \frac{|\frac{2n}{3x - n}|}{\frac{2n}{3x - n}} \, dx. \] ### Step 2: Evaluate each integral For each interval \([-n, -n+1]\), \([x] = n\). Therefore, we can simplify the expression: \[ \frac{|\frac{2n}{3x - n}|}{\frac{2n}{3x - n}} = \text{sgn}\left(\frac{2n}{3x - n}\right). \] This means we need to analyze the sign of \(\frac{2n}{3x - n}\). ### Step 3: Determine the sign 1. **For \(x \in [-10, -9]\)**: Here, \(n = -10\). - \(\frac{2(-10)}{3x - (-10)} = \frac{-20}{3x + 10}\). - For \(x = -10\), this is undefined. As \(x\) approaches \(-10\) from the right, the expression is negative. - Thus, the integral evaluates to \(-1\) over this interval. 2. **For \(x \in [-9, -8]\)**: Here, \(n = -9\). - \(\frac{2(-9)}{3x + 9}\). - Similar analysis shows this is also negative, yielding \(-1\). Continuing this analysis through all intervals, we find that: - For each interval from \([-10, -9]\) to \([-1, 0]\), the integral evaluates to \(-1\). ### Step 4: Sum the contributions Since there are 10 intervals from \(-10\) to \(0\): \[ I = \sum_{n=-10}^{-1} (-1) = 10 \times (-1) = -10. \] ### Conclusion The value of the integral is: \[ \boxed{-10}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

The value of the integral int_(0)^(1) (sqrt(x)dx)/((1+x) (1+3x ) (3+x)) is :

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the definite integral int _(0) ^(10) ((x-5) +(x-5)^(2) +(c-5)^(3)) dx is:

The value ofdefinite integral int_(-2)^(2)(x^(3)-x+1)/(sqrt(4-x^(2)))dx

The value of the definite integral I=int_(0)^(1)root(3)(2x^(3)-3x^(2)+3x-1)dx=

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Exercise
  1. int(-pi/2)^(pi//2) log(e ){((ax^(2)+bx+c)/(ax^(2)-bx+c))(a+b)|sinx|}dx...

    Text Solution

    |

  2. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  3. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |

  4. If phi'(x)=(log(e )|sin x|)/(x),x ne pi,n in Z and int(1)^(3) (3log(...

    Text Solution

    |

  5. The equation int(-pi//4)^(pi//4) {a|sin x|+(b sin x)/(1+cos x)+c}dx=...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x i...

    Text Solution

    |

  7. The value of int(alpha)^(beta) x|x|dx, where a lt 0 lt beta, is

    Text Solution

    |

  8. int(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dxhas the value

    Text Solution

    |

  9. If [.] denotes the greatest integer function and f(x)={:{(3[x]-(5|x|...

    Text Solution

    |

  10. Find the value of int(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denot...

    Text Solution

    |

  11. The value of int(-1)^(1)sin^(-1)[x^(2)+(1)/(2)]dx+int(-1)^(1) cos^(-...

    Text Solution

    |

  12. Let Delta(y)=|{:(y+a,y+b,y+a-c),(y+b,y+c,y-1),(y+c,y+d,y-b+d):}| and,...

    Text Solution

    |

  13. If I=int0^(1) (1)/(1+x^(pi//2))dx, then\

    Text Solution

    |

  14. If int(0)^(x) f(t)dt=x^(2)+2x-int(0)^(x) tf(t)dt, x in (0,oo). Then, f...

    Text Solution

    |

  15. The value of int(-6)^(6) "max"(|2-|x||,4-|x|,3)dx ,is

    Text Solution

    |

  16. If I(n)=int(0)^(pi) e^(x)(sinx)^(n)dx, then (I(3))/(I(1)) is equal to

    Text Solution

    |

  17. Given that lim(n to oo)sum(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2...

    Text Solution

    |

  18. Let f(x)be a differentiable function such that f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  19. Let f(x) be a differentiable function satisfying f'(x)=f(x)+int(0)^(2)...

    Text Solution

    |

  20. The value of the integral int(-10)^(0) (|(2[x])/(3x-[x])|)/(((2[x])/(3...

    Text Solution

    |