Home
Class 12
MATHS
The value of the integral int(0)^(2)x[x]...

The value of the integral `int_(0)^(2)x[x]dx`

A

`(7)/(2)`

B

`(3)/(2)`

C

`(5)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} x \lfloor x \rfloor \, dx \), we will break the integral into two parts based on the behavior of the greatest integer function \( \lfloor x \rfloor \). ### Step 1: Identify the intervals The function \( \lfloor x \rfloor \) changes its value at integer points. Therefore, we will split the integral at \( x = 1 \): - From \( 0 \) to \( 1 \), \( \lfloor x \rfloor = 0 \) - From \( 1 \) to \( 2 \), \( \lfloor x \rfloor = 1 \) ### Step 2: Break the integral We can now express the integral as: \[ I = \int_{0}^{1} x \lfloor x \rfloor \, dx + \int_{1}^{2} x \lfloor x \rfloor \, dx \] ### Step 3: Evaluate the first integral For the first integral: \[ \int_{0}^{1} x \lfloor x \rfloor \, dx = \int_{0}^{1} x \cdot 0 \, dx = \int_{0}^{1} 0 \, dx = 0 \] ### Step 4: Evaluate the second integral For the second integral: \[ \int_{1}^{2} x \lfloor x \rfloor \, dx = \int_{1}^{2} x \cdot 1 \, dx = \int_{1}^{2} x \, dx \] Now, we compute this integral: \[ \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} \] Calculating the limits: \[ = \left( \frac{2^2}{2} - \frac{1^2}{2} \right) = \left( \frac{4}{2} - \frac{1}{2} \right) = 2 - \frac{1}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \] ### Step 5: Combine the results Now, we combine the results from both integrals: \[ I = 0 + \frac{3}{2} = \frac{3}{2} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{2} x \lfloor x \rfloor \, dx \) is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x, then find the value of the integral int_(0)^(2)x^(2)[x]dx

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

The value of the integral int _(0)^(2) | x^(2)-1| dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The integral int(0)^(r pi) sin^(2x)x dx is equal to

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f(x) be a funntion satifying f'(x)=f(x) with f(0)=1 and g(x) be th...

    Text Solution

    |

  5. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  11. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  13. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  14. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  15. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |