Home
Class 12
MATHS
The vaue of int(-1)^(2) (|x|)/(x)dx is...

The vaue of `int_(-1)^(2) (|x|)/(x)dx` is

A

0

B

1

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{2} \frac{|x|}{x} \, dx \), we need to analyze the absolute value function and break the integral into appropriate intervals. ### Step-by-Step Solution: 1. **Identify the intervals based on the absolute value function**: The function \( |x| \) behaves differently depending on whether \( x \) is negative or non-negative: - For \( x < 0 \), \( |x| = -x \) - For \( x \geq 0 \), \( |x| = x \) Therefore, we will split the integral at \( x = 0 \): \[ \int_{-1}^{2} \frac{|x|}{x} \, dx = \int_{-1}^{0} \frac{|x|}{x} \, dx + \int_{0}^{2} \frac{|x|}{x} \, dx \] 2. **Evaluate the first integral** \( \int_{-1}^{0} \frac{|x|}{x} \, dx \): In this interval, \( |x| = -x \), so: \[ \int_{-1}^{0} \frac{|x|}{x} \, dx = \int_{-1}^{0} \frac{-x}{x} \, dx = \int_{-1}^{0} -1 \, dx \] This simplifies to: \[ \int_{-1}^{0} -1 \, dx = -1 \cdot (0 - (-1)) = -1 \cdot 1 = -1 \] 3. **Evaluate the second integral** \( \int_{0}^{2} \frac{|x|}{x} \, dx \): In this interval, \( |x| = x \), so: \[ \int_{0}^{2} \frac{|x|}{x} \, dx = \int_{0}^{2} \frac{x}{x} \, dx = \int_{0}^{2} 1 \, dx \] This simplifies to: \[ \int_{0}^{2} 1 \, dx = 1 \cdot (2 - 0) = 2 \] 4. **Combine the results**: Now we can combine the results of the two integrals: \[ \int_{-1}^{2} \frac{|x|}{x} \, dx = \int_{-1}^{0} \frac{|x|}{x} \, dx + \int_{0}^{2} \frac{|x|}{x} \, dx = -1 + 2 = 1 \] ### Final Answer: The value of the integral \( \int_{-1}^{2} \frac{|x|}{x} \, dx \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-2)^(1)(|x|)/(x)dx=?

int_(-1)^(2)|x|dx=

int_(1)^(2)(log x)/(x)dx=

Evaluate int_(-2)^(1)(|x|)/(x)dx

Evaluate int_(-2)^(1)(|x|)/(x)dx

int_(-1)^(2)|x^(3)-x|dx

int_(1)^(2)|2x-1|dx

int_(1)^(2)(x+3)/(x(x+2))dx

int_(-1)^(1)(1-x^(2))/(1+x^(2))dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If I=int(0)^(1) cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

    Text Solution

    |

  2. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  3. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  4. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  5. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  6. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  7. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  8. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  9. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  10. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  11. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  12. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  13. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  14. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  15. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  16. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |

  17. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  18. lim(x to 0)(int(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  19. If x satisfies the equation x^(2)( int(0)^(1) (dt)/(t^(2)+ 2t cos al...

    Text Solution

    |

  20. The value of alpha in (-pi, 0) satisfying sin alpha+int(alpha)^(2alpha...

    Text Solution

    |