Home
Class 12
MATHS
The value of int0^1 (x^(3))/(1+x^(8))dx ...

The value of `int_0^1 (x^(3))/(1+x^(8))dx` is

A

`(pi)/(4)`

B

`(pi)/(8)`

C

`(pi)/(16)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{x^3}{1+x^8} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Define the integral Let: \[ I = \int_0^1 \frac{x^3}{1+x^8} \, dx \] ### Step 2: Use substitution We will use the substitution \( t = x^4 \). Then, we differentiate: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] Also, when \( x = 0 \), \( t = 0^4 = 0 \) and when \( x = 1 \), \( t = 1^4 = 1 \). ### Step 3: Substitute in the integral Now, we can express \( x^3 \) in terms of \( t \): \[ x = t^{1/4} \quad \Rightarrow \quad x^3 = (t^{1/4})^3 = t^{3/4} \] Thus, the integral becomes: \[ I = \int_0^1 \frac{t^{3/4}}{1 + (t^{1/4})^8} \cdot \frac{dt}{4t^{3/4}} = \frac{1}{4} \int_0^1 \frac{1}{1+t^2} \, dt \] ### Step 4: Simplify the integral Now we can simplify the integral: \[ I = \frac{1}{4} \int_0^1 \frac{1}{1+t^2} \, dt \] ### Step 5: Evaluate the integral The integral \( \int \frac{1}{1+t^2} \, dt \) is known to be: \[ \int \frac{1}{1+t^2} \, dt = \tan^{-1}(t) \] Thus, we evaluate: \[ \int_0^1 \frac{1}{1+t^2} \, dt = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 6: Final calculation Now substituting back: \[ I = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16} \] ### Conclusion The value of the integral is: \[ \boxed{\frac{\pi}{16}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(0)^(1)(x^(7))/(1+x^(8))dx

The value of int_0^1 (8log(1+x))/(1+x^2) dx is:

The value of int_(0)^(1) x^(2) (1- x)^(9) dx is

The value of the integral int_(0)^(1)(x^(3))/(1+x^(8))dx is

The value of int_0^(10) (x +(1)/(x)) dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  2. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  3. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  4. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  5. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  6. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  7. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  8. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  9. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  10. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  11. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  13. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  14. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  15. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |

  16. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  17. lim(x to 0)(int(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  18. If x satisfies the equation x^(2)( int(0)^(1) (dt)/(t^(2)+ 2t cos al...

    Text Solution

    |

  19. The value of alpha in (-pi, 0) satisfying sin alpha+int(alpha)^(2alpha...

    Text Solution

    |

  20. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |