Home
Class 12
MATHS
The value of the integral int(0)^(1) lo...

The value of the integral `int_(0)^(1) log sin ((pix)/(2))dx` is

A

log 2

B

`-log 2`

C

`(pi)/(2)log 2`

D

`-(pi)/(2) log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \log \sin\left(\frac{\pi x}{2}\right) \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \frac{\pi x}{2} \). Then, we differentiate to find \( dx \): \[ dx = \frac{2}{\pi} dt \] When \( x = 0 \), \( t = 0 \) and when \( x = 1 \), \( t = \frac{\pi}{2} \). 2. **Change of Limits and Integral**: Substitute \( x \) and \( dx \) in the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \cdot \frac{2}{\pi} dt = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt \] 3. **Define a New Integral**: Let \( J = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt \). Then, we have: \[ I = \frac{2}{\pi} J \] 4. **Using Symmetry**: We can use the property of definite integrals: \[ J = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt = \int_{0}^{\frac{\pi}{2}} \log(\cos t) \, dt \] Thus, we can write: \[ 2J = \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt + \int_{0}^{\frac{\pi}{2}} \log(\cos t) \, dt = \int_{0}^{\frac{\pi}{2}} \log(\sin t \cos t) \, dt \] 5. **Simplifying the Integral**: Using the identity \( \sin t \cos t = \frac{1}{2} \sin(2t) \): \[ 2J = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2} \sin(2t)\right) \, dt \] This can be split into two integrals: \[ 2J = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dt + \int_{0}^{\frac{\pi}{2}} \log(\sin(2t)) \, dt \] 6. **Evaluating the First Integral**: The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right) \, dt = \log\left(\frac{1}{2}\right) \cdot \frac{\pi}{2} = -\frac{\pi}{2} \log(2) \] 7. **Evaluating the Second Integral**: For the second integral, use the substitution \( u = 2t \): \[ \int_{0}^{\frac{\pi}{2}} \log(\sin(2t)) \, dt = \frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du \] By a known result, \( \int_{0}^{\pi} \log(\sin u) \, du = -\pi \log(2) \). Therefore: \[ \frac{1}{2} \int_{0}^{\pi} \log(\sin u) \, du = -\frac{\pi}{2} \log(2) \] 8. **Combining Results**: Thus, we have: \[ 2J = -\frac{\pi}{2} \log(2) - \frac{\pi}{2} \log(2) = -\pi \log(2) \] Therefore: \[ J = -\frac{\pi}{2} \log(2) \] 9. **Final Calculation**: Substitute \( J \) back into the expression for \( I \): \[ I = \frac{2}{\pi} \left(-\frac{\pi}{2} \log(2)\right) = -\log(2) \] ### Final Answer: \[ I = -\log(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi)x log sin x dx is

int_(0)^(1)log sin((pi)/(2)x)dx equals

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

Evaluate int_(0)^(1)log(sin((pi x)/(2)))dx

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(0)^(oo)(x log x)/((1+x^(2))^(2))dx is 0(b)log7(c)5log13(d) none of these

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  2. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  3. The value of the integral int(0)^(1) log sin ((pix)/(2))dx is

    Text Solution

    |

  4. The value of the integral int(0)^(pi)x log sin x dx is

    Text Solution

    |

  5. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)underset(0)overset(oo)in...

    Text Solution

    |

  6. If f(x)={{:(x,"for " x lt 1),(x-1,"for " x ge1):},"then" int(0)^(2) x...

    Text Solution

    |

  7. The value of the integral int(0)^(2) (1)/((x^(2)+1)^(3//2))dx is

    Text Solution

    |

  8. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  9. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  10. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  11. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  12. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  13. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |

  14. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  15. lim(x to 0)(int(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  16. If x satisfies the equation x^(2)( int(0)^(1) (dt)/(t^(2)+ 2t cos al...

    Text Solution

    |

  17. The value of alpha in (-pi, 0) satisfying sin alpha+int(alpha)^(2alpha...

    Text Solution

    |

  18. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  19. The value of int(0)^(pi) (1)/(5+3cosx)dx, is

    Text Solution

    |

  20. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))...

    Text Solution

    |