Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2) sin^(6) x dx`, is

A

`(3pi)/(4)`

B

`(5)/(32) pi`

C

`(3)/(16) pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin^6 x \, dx \), we will use the property of definite integrals and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int_0^{\frac{\pi}{2}} \sin^6 x \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals: \[ \int_0^{a} f(x) \, dx = \int_0^{a} f(a - x) \, dx \] In our case, we can write: \[ I = \int_0^{\frac{\pi}{2}} \sin^6 x \, dx = \int_0^{\frac{\pi}{2}} \cos^6 x \, dx \] ### Step 3: Add the two integrals Now, we add both expressions for \( I \): \[ 2I = \int_0^{\frac{\pi}{2}} \sin^6 x \, dx + \int_0^{\frac{\pi}{2}} \cos^6 x \, dx \] This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \sin^6 x + \cos^6 x \right) \, dx \] ### Step 4: Use the identity for \( a^3 + b^3 \) We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \): \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x \] ### Step 5: Simplify \( \sin^4 x + \cos^4 x \) Using the identity \( \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \): \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x \] Thus, we can write: \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos^2 x \] ### Step 6: Substitute back into the integral Now substituting back into our integral: \[ 2I = \int_0^{\frac{\pi}{2}} \left( 1 - 3\sin^2 x \cos^2 x \right) \, dx \] This can be split into two integrals: \[ 2I = \int_0^{\frac{\pi}{2}} 1 \, dx - 3 \int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx \] ### Step 7: Evaluate the first integral The first integral is straightforward: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] ### Step 8: Evaluate the second integral For the second integral, we use the identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \): \[ \int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int_0^{\frac{\pi}{2}} \sin^2(2x) \, dx \] Using the formula \( \int \sin^2(kx) \, dx = \frac{x}{2} - \frac{\sin(2kx)}{4k} + C \), we find: \[ \int_0^{\frac{\pi}{2}} \sin^2(2x) \, dx = \frac{\pi}{4} \] Thus: \[ \int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16} \] ### Step 9: Substitute back to find \( I \) Now substituting back: \[ 2I = \frac{\pi}{2} - 3 \cdot \frac{\pi}{16} = \frac{\pi}{2} - \frac{3\pi}{16} = \frac{8\pi}{16} - \frac{3\pi}{16} = \frac{5\pi}{16} \] Thus: \[ I = \frac{5\pi}{32} \] ### Final Answer The value of the integral \( \int_0^{\frac{\pi}{2}} \sin^6 x \, dx \) is \[ \boxed{\frac{5\pi}{32}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int _(0)^(pi//2) (sin ^(100)x - cos^(100)x) dx is

The value of the integral int_(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ sinx)/( 2- sin x))) dx is

The value of the integral int _(0)^(pi//2) log | tan x| dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(2a) f(x)dx=int(0)^(2a) f(x)dx, then

    Text Solution

    |

  2. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  4. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  5. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  6. If int(pi//2)^(x) sqrt(3-2sin^(2)u) dx+int(dx)^(dy) equal pi//2

    Text Solution

    |

  7. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  8. lim(x to 0)(int(0)^t(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |

  9. If x satisfies the equation x^(2)( int(0)^(1) (dt)/(t^(2)+ 2t cos al...

    Text Solution

    |

  10. The value of alpha in (-pi, 0) satisfying sin alpha+int(alpha)^(2alpha...

    Text Solution

    |

  11. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  12. The value of int(0)^(pi) (1)/(5+3cosx)dx, is

    Text Solution

    |

  13. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))...

    Text Solution

    |

  14. lim(n to oo) sum(r=1)^(n) {(r^(3))/(r^(4)+n^(4))} equals

    Text Solution

    |

  15. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  16. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  17. The solution of the equation int(0)^(x) (1)/(xsqrt(2^(2)-1))dx=(pi)/(1...

    Text Solution

    |

  18. Let I(n)=int(0)^(pi//4) tan^(n) x dx, (n gt1 and n in N), then

    Text Solution

    |

  19. If I(m)=int(1)^(x) (log x)^(m)dx satisfies the relation Im = k-lI(m-1...

    Text Solution

    |

  20. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |