Home
Class 12
MATHS
The value of int(0)^(pi//2) (sin^(3)x co...

The value of `int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx` is

A

`pi//8`

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x}{\sin^4 x + \cos^4 x} \, dx, \] we can use the property of definite integrals that states: \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let’s first apply this property to our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)}{\sin^4\left(\frac{\pi}{2} - x\right) + \cos^4\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the integrand Using the identities \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\) and \(\cos\left(\frac{\pi}{2} - x\right) = \sin x\), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x \sin x}{\cos^4 x + \sin^4 x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x}{\sin^4 x + \cos^4 x} \, dx\) 2. \(I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x \sin x}{\sin^4 x + \cos^4 x} \, dx\) Adding these two expressions gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x + \cos^3 x \sin x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 4: Factor the numerator Notice that the numerator can be factored: \[ \sin^3 x \cos x + \cos^3 x \sin x = \sin x \cos x (\sin^2 x + \cos^2 x) = \sin x \cos x. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx. \] ### Step 5: Simplify the denominator We can simplify the denominator: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] ### Step 6: Substitute and evaluate Now we substitute back into the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 - 2\sin^2 x \cos^2 x} \, dx. \] Using the identity \(\sin 2x = 2 \sin x \cos x\), we can rewrite the integral: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 - \frac{1}{2} \sin^2 2x} \, dx. \] ### Step 7: Solve the integral This integral can be evaluated using standard techniques or tables, leading to: \[ I = \frac{\pi}{8}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int _(0)^(pi//2)(sin ^(2)x-cos ^(2)x)/(sin ^(3)x+cos^(3)x)dx is

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

int_(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

Evaluate :int_(0)^((pi)/(2))(x sin x cos x)/(sin^(4)x+cos^(4)x)dx

int_(0)^((pi)/(2))(sin x cos x)/(1+sin^(4)x)dx

int_(0)^((pi)/(2))(x sin x cos x)/(cos^(4)x+sin^(4)x)dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If x satisfies the equation x^(2)( int(0)^(1) (dt)/(t^(2)+ 2t cos al...

    Text Solution

    |

  2. The value of alpha in (-pi, 0) satisfying sin alpha+int(alpha)^(2alpha...

    Text Solution

    |

  3. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  4. The value of int(0)^(pi) (1)/(5+3cosx)dx, is

    Text Solution

    |

  5. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))...

    Text Solution

    |

  6. lim(n to oo) sum(r=1)^(n) {(r^(3))/(r^(4)+n^(4))} equals

    Text Solution

    |

  7. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  8. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  9. The solution of the equation int(0)^(x) (1)/(xsqrt(2^(2)-1))dx=(pi)/(1...

    Text Solution

    |

  10. Let I(n)=int(0)^(pi//4) tan^(n) x dx, (n gt1 and n in N), then

    Text Solution

    |

  11. If I(m)=int(1)^(x) (log x)^(m)dx satisfies the relation Im = k-lI(m-1...

    Text Solution

    |

  12. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  13. If I(m,n)=int(0)^(1)x^(m-1) (1-x)^(n-1)dx then

    Text Solution

    |

  14. The total number of extremum(s) of y=int0^(x^2)(t^2-5t+4)/(2+e^t)dt ar...

    Text Solution

    |

  15. The tangent to the curve y=f (x) at the point with abscissa x =1 from ...

    Text Solution

    |

  16. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  17. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  18. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  19. If int(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  20. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |