Home
Class 12
MATHS
underset(nrarroo)"lim"[sin'(pi)/(n)+sin'...

`underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi]` is equal to :

A

0

B

`pi`

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals:

Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to

If the sum of (n-1) terms of the series sin((pi)/(n))+sin((2 pi)/(n))+sin((3 pi)/(n))+.... is equal to 2+sqrt(3), then find the value of n.

The value of (sin pi)/(n)+(sin(3 pi))/(n)+(sin(5 pi))/(n)+... to n terms is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of int(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx i...

    Text Solution

    |

  2. The value of int(0)^(pi) (1)/(5+3cosx)dx, is

    Text Solution

    |

  3. underset(nrarroo)"lim"[sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))...

    Text Solution

    |

  4. lim(n to oo) sum(r=1)^(n) {(r^(3))/(r^(4)+n^(4))} equals

    Text Solution

    |

  5. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  6. Evaluate: (lim)(nvecoo)n[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

    Text Solution

    |

  7. The solution of the equation int(0)^(x) (1)/(xsqrt(2^(2)-1))dx=(pi)/(1...

    Text Solution

    |

  8. Let I(n)=int(0)^(pi//4) tan^(n) x dx, (n gt1 and n in N), then

    Text Solution

    |

  9. If I(m)=int(1)^(x) (log x)^(m)dx satisfies the relation Im = k-lI(m-1...

    Text Solution

    |

  10. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  11. If I(m,n)=int(0)^(1)x^(m-1) (1-x)^(n-1)dx then

    Text Solution

    |

  12. The total number of extremum(s) of y=int0^(x^2)(t^2-5t+4)/(2+e^t)dt ar...

    Text Solution

    |

  13. The tangent to the curve y=f (x) at the point with abscissa x =1 from ...

    Text Solution

    |

  14. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  15. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  16. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  17. If int(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  18. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  19. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  20. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |