Home
Class 12
MATHS
If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "th...

If `I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx`

A

`lambdaI_(n)`

B

`(1)/(lambda)I_(n)`

C

`(I_(n))/(lambda^(n))`

D

`lambda^(n)I_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_{0}^{\infty} e^{-\lambda x} x^{n-1} \, dx \] given that \[ I_m = \int_{0}^{\infty} e^{-x} x^{n-1} \, dx. \] ### Step 1: Change of Variables We will perform a change of variables by letting \( t = \lambda x \). Then, we can express \( x \) in terms of \( t \): \[ x = \frac{t}{\lambda}. \] ### Step 2: Compute the Differential Next, we need to compute the differential \( dx \): \[ dx = \frac{1}{\lambda} dt. \] ### Step 3: Change the Limits of Integration Now we will change the limits of integration. When \( x = 0 \), \( t = 0 \), and when \( x = \infty \), \( t = \infty \). Thus, the limits remain the same: \[ \int_{0}^{\infty} \rightarrow \int_{0}^{\infty}. \] ### Step 4: Substitute into the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{0}^{\infty} e^{-\lambda x} x^{n-1} \, dx = \int_{0}^{\infty} e^{-t} \left(\frac{t}{\lambda}\right)^{n-1} \frac{1}{\lambda} dt. \] ### Step 5: Simplify the Integral Now we can simplify the integral: \[ I = \int_{0}^{\infty} e^{-t} \frac{t^{n-1}}{\lambda^{n-1}} \cdot \frac{1}{\lambda} dt = \frac{1}{\lambda^n} \int_{0}^{\infty} e^{-t} t^{n-1} dt. \] ### Step 6: Recognize the Integral The integral \[ \int_{0}^{\infty} e^{-t} t^{n-1} dt \] is equal to \( I_m \): \[ I_m = \int_{0}^{\infty} e^{-t} t^{n-1} dt. \] ### Step 7: Final Expression Thus, we can write: \[ I = \frac{I_m}{\lambda^n}. \] ### Conclusion The value of the integral \[ \int_{0}^{\infty} e^{-\lambda x} x^{n-1} \, dx = \frac{I_m}{\lambda^n}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(1)x e^(x)dx=

int_(0)^(oo)(a^(-x)-b^(-x))dx

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

int_(0)^(oo)(a^(-x)-b^(-x))dx=

int_(0)^(oo)(x)/(1+x^(4))dx=

int_(0)^(oo)x^(3)e^(-x^(2))dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. Let I(n)=int(0)^(pi//4) tan^(n) x dx, (n gt1 and n in N), then

    Text Solution

    |

  2. If I(m)=int(1)^(x) (log x)^(m)dx satisfies the relation Im = k-lI(m-1...

    Text Solution

    |

  3. If I(m)=int(0)^(oo) e^(-x)x^(n-1)dx, "then" int(0)^(oo) e^(-lambdax) x...

    Text Solution

    |

  4. If I(m,n)=int(0)^(1)x^(m-1) (1-x)^(n-1)dx then

    Text Solution

    |

  5. The total number of extremum(s) of y=int0^(x^2)(t^2-5t+4)/(2+e^t)dt ar...

    Text Solution

    |

  6. The tangent to the curve y=f (x) at the point with abscissa x =1 from ...

    Text Solution

    |

  7. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  8. The value of the inntegral int(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-...

    Text Solution

    |

  9. The value of the integral int(alpha)^(beta) sqrt((x-alpha)(beta-x))dx,...

    Text Solution

    |

  10. If int(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  11. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  12. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  13. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  14. The value of lim(n->oo) [(1+1/n^2)(1+2^2/n^2)...(1+n^2/n^2)]^(1/n)

    Text Solution

    |

  15. If int(0)^(1) e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  16. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  17. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  18. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  19. Let I= int(0)^(1) (x^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  20. The value of the integral int(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt a...

    Text Solution

    |