Home
Class 12
MATHS
The integral int(-1)^(1) (|x+2|)/(x+2)...

The integral ` int_(-1)^(1) (|x+2|)/(x+2)dx` is equal to

A

1

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \frac{|x+2|}{x+2} \, dx \), we will first analyze the expression inside the integral. ### Step 1: Analyze the Absolute Value The expression \( |x + 2| \) depends on the value of \( x \): - For \( x < -2 \), \( |x + 2| = -(x + 2) \). - For \( x \geq -2 \), \( |x + 2| = x + 2 \). Since our limits of integration are from \(-1\) to \(1\), we note that both \(-1\) and \(1\) are greater than \(-2\). Therefore, within the interval \([-1, 1]\), we have: \[ |x + 2| = x + 2. \] ### Step 2: Simplify the Integral Substituting \( |x + 2| \) into the integral, we get: \[ I = \int_{-1}^{1} \frac{x + 2}{x + 2} \, dx. \] For \( x \neq -2 \), this simplifies to: \[ I = \int_{-1}^{1} 1 \, dx. \] ### Step 3: Evaluate the Integral Now, we can evaluate the integral: \[ I = \int_{-1}^{1} 1 \, dx = [x]_{-1}^{1} = 1 - (-1) = 1 + 1 = 2. \] ### Final Result Thus, the value of the integral is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

int_(-1)^(1) (dx) / (x^(2)+2x+5) is equal to

The value of integral int_(-1)^(1) (|x+2|)/(x+2)dx is

The value of definite integral int_(-1)^(1)(7-(2x-1)dx is equal to

The value of integral int_(-1)^(1)(|x+2|)/(x+2) dx is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral int_(-2)^(2)(1+2sin x)e^(|x|)dx is equal to

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. The value of lim(n->oo) [(1+1/n^2)(1+2^2/n^2)...(1+n^2/n^2)]^(1/n)

    Text Solution

    |

  6. If int(0)^(1) e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (x^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. The value of the integral int(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt a...

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. If int0^pi 1/(a+bcosx)dx=pi/sqrt(a^2-b^2), then int0^pi 1/(a+bcosx)^2d...

    Text Solution

    |

  14. If int(1)^(oo) e^(-ax) dx=(1)/(a),"then" int(1)^(oo) x^(n)e^(-ax)dx...

    Text Solution

    |

  15. The value of int(pi)^(2pi) [ 2 sin x] dx, where [] repreents the great...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. If I(n)=int(0)^(pi//4) tan^(n) x dx, lim(n to oo) n(I(n+1)+I(n-1)) equ...

    Text Solution

    |

  20. int(0)^(a) f(x) dx= lambda and int(0)^(a) f(2a-x) dx= mu, then int(0)^...

    Text Solution

    |