Home
Class 12
MATHS
The value of the integral int(0)^(pi) (x...

The value of the integral `int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi`, is

A

`(pi alpha)/(sin alpha)`

B

`(pi alpha)/(1+sin alpha)`

C

`(pi alpha)/(cos alpha)`

D

`(pi alpha)/(1+cos alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x}, \quad 0 < \alpha < \pi, \] we will use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Substitute \( x \) with \( \pi - x \) Let’s denote the integral as \( I \): \[ I = \int_{0}^{\pi} \frac{x \, dx}{1 + \cos \alpha \sin x}. \] Now, we will substitute \( x \) with \( \pi - x \): \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin(\pi - x)}. \] Since \( \sin(\pi - x) = \sin x \), we have: \[ I = \int_{0}^{\pi} \frac{\pi - x \, dx}{1 + \cos \alpha \sin x}. \] ### Step 2: Combine the two integrals Now, we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\pi} \left( \frac{x \, dx}{1 + \cos \alpha \sin x} + \frac{\pi - x \, dx}{1 + \cos \alpha \sin x} \right). \] This simplifies to: \[ 2I = \int_{0}^{\pi} \frac{\pi \, dx}{1 + \cos \alpha \sin x}. \] ### Step 3: Solve for \( I \) We can now express \( I \) as: \[ I = \frac{\pi}{2} \int_{0}^{\pi} \frac{dx}{1 + \cos \alpha \sin x}. \] ### Step 4: Evaluate the integral Next, we need to evaluate the integral: \[ \int_{0}^{\pi} \frac{dx}{1 + \cos \alpha \sin x}. \] To do this, we can use the substitution \( t = \tan \frac{x}{2} \), which gives: \[ \sin x = \frac{2t}{1 + t^2}, \quad dx = \frac{2 \, dt}{1 + t^2}. \] Changing the limits, when \( x = 0 \), \( t = 0 \) and when \( x = \pi \), \( t \to \infty \): \[ \int_{0}^{\pi} \frac{dx}{1 + \cos \alpha \sin x} = \int_{0}^{\infty} \frac{2 \, dt}{(1 + t^2)(1 + \cos \alpha \cdot \frac{2t}{1 + t^2})}. \] ### Step 5: Simplify the integral This can be simplified further, and we can complete the square in the denominator. After some algebra, we will arrive at: \[ \int_{0}^{\infty} \frac{dt}{t^2 + (1 - \cos^2 \alpha)} = \frac{1}{\sin \alpha} \cdot \frac{\pi}{2}. \] ### Final Step: Combine results Thus, we have: \[ I = \frac{\pi}{2} \cdot \frac{\pi}{\sin \alpha} = \frac{\pi^2}{2 \sin \alpha}. \] ### Conclusion The value of the integral is: \[ \boxed{\frac{\pi^2}{2 \sin \alpha}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

int_(0)^( pi)(xdx)/(1+cos alpha*sin alpha)(0

Evaluate the following integral: int_(0)^( pi)(x)/(1+cos alpha s in x)dx

Evaluate the integration int_(0)^( pi/2) cos xdx

int_(0)^( Evaluate: )(xdx)/(1+cos alpha sin x), where0

int_(0)^(pi)(xdx)/(1+sinx) is equal to

The value of int_(0)^(pi) cos^(11)xdx , is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 2
  1. If int(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

    Text Solution

    |

  2. The value of integral int(1)^(e) (log x)^(3)dx , is

    Text Solution

    |

  3. If int(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

    Text Solution

    |

  4. lim(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

    Text Solution

    |

  5. The value of lim(n->oo) [(1+1/n^2)(1+2^2/n^2)...(1+n^2/n^2)]^(1/n)

    Text Solution

    |

  6. If int(0)^(1) e^(x^(2))(x-alpha)dx=0 then

    Text Solution

    |

  7. If f(x) satisfies the requirements of Rolle's Theorem in [1,2] and f(x...

    Text Solution

    |

  8. The value of the integral int(0)^(1) cot^(-1) (1-x+x^(2))dx, is

    Text Solution

    |

  9. The integral int(-1)^(1) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. Let I= int(0)^(1) (x^(x))/( x+1) dx, then the vlaue of the intergral ...

    Text Solution

    |

  11. The value of the integral int(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt a...

    Text Solution

    |

  12. int(pi)^(10n) |sin x|dx is equla to

    Text Solution

    |

  13. If int0^pi 1/(a+bcosx)dx=pi/sqrt(a^2-b^2), then int0^pi 1/(a+bcosx)^2d...

    Text Solution

    |

  14. If int(1)^(oo) e^(-ax) dx=(1)/(a),"then" int(1)^(oo) x^(n)e^(-ax)dx...

    Text Solution

    |

  15. The value of int(pi)^(2pi) [ 2 sin x] dx, where [] repreents the great...

    Text Solution

    |

  16. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  17. If I(m,n)= int(0)^(1) x^(m) (ln x)^(n)dx then I(m,n) is also equal to

    Text Solution

    |

  18. lim(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

    Text Solution

    |

  19. If I(n)=int(0)^(pi//4) tan^(n) x dx, lim(n to oo) n(I(n+1)+I(n-1)) equ...

    Text Solution

    |

  20. int(0)^(a) f(x) dx= lambda and int(0)^(a) f(2a-x) dx= mu, then int(0)^...

    Text Solution

    |