Home
Class 12
MATHS
For a in [pi , 2 pi] and n in Z the cr...

For ` a in [pi , 2 pi]` and `n in Z` the critical points of g
`f(x) = 1/3 sin a tan ^3 "" x + (sin a-1)tan x + sqrt(a-2)/(8-a)` are

A

`x = n pi`

B

`x=2n pi`

C

`x= (2n +1)pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

We have
`f(x)=sin a+ tan^2 x sec^2 x + (sin a-1)sec^2`
`rArr f(x)=sin a tan ^2 x +sin a-1)sec^2 x`
At critical points ,we must have f(x)=0
`rArr sina tan^2 x+ sin a-1 =0 " " [thereforesec^2xne0 " for any "x in R]`
`tan^2x=(1-sina)/sina`
Now
` a in [pi,2 pi]`
`rArr (1-sina)/sinalt0`
`rArr tan^2x=(1-sina)/sina` does not have solution in R
Hence , f(x) has not critical points
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Exercise|50 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sin x tan x and g(x) = x^(2) then in interval x in (0, pi//2) is

sin^(-1)x+tan^(-1)x=(pi)/(2)

Solve sin x tan x -sin x+ tan x-1=0 for x in [0, 2pi] .

Solve underset( pi rarr ( pi )/( 2)) ("lim") sqrt(( tan x - sin { tan ^(-1) ( tan x )})/( tan x + cos ^(2)( tan x )))

lim_ (x rarr (pi) / (2)) ((1-tan ((x) / (2))) (1-sin x)) / ((1 + tan ((x) / (2))) ((pi-2x) ^ (3)))

f(x)=tan x,x in(-(pi)/(2),(pi)/(2)) and g(x)=sqrt(1-x^(2)) then g(f(x)) is

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

OBJECTIVE RD SHARMA-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. The set of all values of a for which the function f(x)=(a^2-3a+2)(cos...

    Text Solution

    |

  2. The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cotx/2...

    Text Solution

    |

  3. For a in [pi , 2 pi] and n in Z the critical points of g f(x) = 1...

    Text Solution

    |

  4. Suppose the cubic x^3-px+q has three real roots where pgt0 and qgt0 . ...

    Text Solution

    |

  5. The critical points of f (x) = (x-2)^(2/3) (2 x +1) are

    Text Solution

    |

  6. If p and q are positive real numbers such that p^2+q^2=1 , then the ma...

    Text Solution

    |

  7. Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only re...

    Text Solution

    |

  8. The difference between the greatest and least value of function f(x)=c...

    Text Solution

    |

  9. A straight line through the point (h,k) where hgt0 and kgt0, makes pos...

    Text Solution

    |

  10. e total number of local maxima and local minima of the function f(x) =...

    Text Solution

    |

  11. If f:R in R is defined by f(x)=(x^(2)-ax+1)/(x^(2)+ax+1),0ltalt2, th...

    Text Solution

    |

  12. If f(x) = {{:(|x|",", "for",,0 lt |x| le 2), (1",", "for,, x =0):}. Th...

    Text Solution

    |

  13. If f(x) is a cubic polynomial which as local maximum at x=-1 . If f(2)...

    Text Solution

    |

  14. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  15. For the functions f(x)= int(0)^(x) (sin t)/t dt where x gt 0. At ...

    Text Solution

    |

  16. Let f(x)=int(0)^(x) (sint-cost)(e^t-2)(t-1)^3(t-1)^3(t-2)^5 dt , 0lt x...

    Text Solution

    |

  17. Let f(x) be a function defined as f(x)={{:(sin(x^2-3x)", "xle0),(6x+...

    Text Solution

    |

  18. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^2-3t+2)dt,x in ...

    Text Solution

    |

  19. If the function f(x)=(4sin ^2 x-1)^n(x^2-x+1)n in N has a local maximu...

    Text Solution

    |

  20. The set of critical pionts of the fuction f(x) given by f(x)= x - l...

    Text Solution

    |