Home
Class 12
MATHS
If f(x) =int(x)^(x^2) (t-1)dt, 1 le x le...

If f(x) `=int_(x)^(x^2) (t-1)dt, 1 le x le 2` then the greatest value of `phi` (x) , is

A

2

B

4

C

8

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have ,
`f(x)=underset(x)overset(x^2)int(t-1)dt`
`rArr f(x)=2x(x^2-1)-(x-1)`
`rArr f(x) = 2x^3-3x+1`
`rArr f'(x)=(x-1)(2x^2 +2x -1)`
`rArr f(x)-2(x-1)(x+(sqrt(3)+1)/(2))(x-(sqrt(3)-1)/(2))`
The signs of f(x) for different values for x are shown in Fig.26

Clearly f'(x) `gt0` for all `x in [1,2]` So, f(x) is increasing on [ 1.2]
Hence ,greatest value of f(x) is equal to
`f(2)=underset(2)overset(4)int[(t-1)^2/2]_2^4=4`
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Exercise|50 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(x)^(x^(2))(t-1)dt,1<=x<=2 then global maximum value of f(x) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If function f(x) = x-|x-x^(2)|, -1 le x le 1 then f is

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) is continuous in [-2,2], where f(x) = {((sinax)/(x)-2,",","for" -2 le x lt 0),(2x+1,",","for"0 le x le 1),(2bsqrt(x^(2)+3)-1,",","for" 1 lt x le 2):} , then the value of (a+b) is

If f(x)={int_(0)^(x)|1-t|dt;x>1,x-(1)/(2);x<=1 then

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to

OBJECTIVE RD SHARMA-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. Let f(x)=x^(n+1)+ax^n, "where " a gt 0. Then, x=0 is point of

    Text Solution

    |

  2. The greph of y=x^3+ax^2+bx+c has no extemun if and only if

    Text Solution

    |

  3. If f(x) =int(x)^(x^2) (t-1)dt, 1 le x le 2 then the greatest value of ...

    Text Solution

    |

  4. If the parabola y=ax^2+bx+c has vertex at(4,2)and a in [1,3] then the...

    Text Solution

    |

  5. Let f(X)=In (2x -x^2)+ sin (pix)/(2). Then which one of the following ...

    Text Solution

    |

  6. If alpha and beta respectively the minmum and minimum values of the fu...

    Text Solution

    |

  7. Let f(x)={{:(x^2+4x "," -3 le x le 0),(-sin x ","0 lt x le pi//2 ),(...

    Text Solution

    |

  8. If alpha be the number of solutions of the equation [sin x] =|x| ) and...

    Text Solution

    |

  9. Let f(x1,x2,x3,x4)=x1^2+x2^2+x3^2+x4^2-2(x1+x2+x3+x4)+10 and x1,x3 i...

    Text Solution

    |

  10. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  11. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  12. Let f:R to R be defined by f(x)={{:(2k-2x",",ifxle-1),(2x+3",",iffxg...

    Text Solution

    |

  13. For e in (0,(5pi)/(2)) " define " f(x)= int(0)^(x) sqrt(t) sin t dt ...

    Text Solution

    |

  14. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  15. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  16. If f(x) = int(0)^(x) e^(t^2)(t-2)(t-3) dt " for all " x in (0,oo) t...

    Text Solution

    |

  17. The function f(x)=2|x|+|x+2|=||x|2|-2|x|| has a local minimum or a loc...

    Text Solution

    |

  18. Let f:[0,1] rarr R be a function . Suppose the fuction f is twice diff...

    Text Solution

    |

  19. Let f:[0,1] rarr R be a function.such that f(0)=f(1)=0 and f''(x)+f(x...

    Text Solution

    |

  20. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |