Home
Class 12
MATHS
Let f,g and h be real-valued functions d...

Let `f,g` and `h` be real-valued functions defined on the interval `[0,1]` by `f(x)=e^(x^2)+e^(-x^2)` , `g(x)=x e^(x^2)+e^(-x^2)` and `h(x)=x^2 e^(x^2)+e^(-x^2)`. if `a,b` and `c` denote respectively, the absolute maximum of `f,g` and `h` on `[0,1]` then

A

`a=b and c ne b`

B

`a=c and ane b `

C

`a ne b and c ne b `

D

a=b=c

Text Solution

Verified by Experts

The correct Answer is:
D

For any ` x in [0,1]` we have
`x^2 le x le 1`
` rArr " "x^2 e^(x^2) le x e^(x^2)le e^(x^2)`
`rArr e^(-x^2)+x^(2)e^(x^2)+e^(-x^2)+x e^(x^2) le e^(-x^2 )+e^(x^2)`
`rArr h(x) le g(x) le f(x)`
Now , `f(x)=e^(x^2)+e^(-x^2)`
`rArr f(x)=2x(ex^2=e^(-x^2))gt 0 " for all "x in (0,1]`
`rArr f(x)` is increasing on (0,1]
`rArr f(1)` is the maximum vlaue of f(x) on [0,1]
`rArr a=e+e^(-1)`
Also `f(1)=g(1)=h(1)=e+e^(-1)`
`therefore a=b=c=e+e^(-1)`
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Exercise|50 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Let f,\ g\ a n d\ h be real-valued functions defined on the interval [0,\ 1] by f(x)=e^x^2+e^-x^2,\ g(x)=x e^x^2+e^-x^2\ a n d\ h(x)=x^2e^x^2+e^-x^2 . If a , b ,\ a n d\ c denote respectively, the absolute maximum of f,\ g\ a n d\ h on [0,\ 1], then a=b\ a n d\ c!=b (b) a=c\ a n d\ a!=b a!=b\ a n d\ c!=b (d) a=b=c

Let f:R rarr R defined by f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))), then f(x) is

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

f:R to R is defined by f(x)= =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) , is

Function f:R rarr R;f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is :

OBJECTIVE RD SHARMA-MAXIMA AND MINIMA -Section I - Solved Mcqs
  1. If alpha and beta respectively the minmum and minimum values of the fu...

    Text Solution

    |

  2. Let f(x)={{:(x^2+4x "," -3 le x le 0),(-sin x ","0 lt x le pi//2 ),(...

    Text Solution

    |

  3. If alpha be the number of solutions of the equation [sin x] =|x| ) and...

    Text Solution

    |

  4. Let f(x1,x2,x3,x4)=x1^2+x2^2+x3^2+x4^2-2(x1+x2+x3+x4)+10 and x1,x3 i...

    Text Solution

    |

  5. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  6. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  7. Let f:R to R be defined by f(x)={{:(2k-2x",",ifxle-1),(2x+3",",iffxg...

    Text Solution

    |

  8. For e in (0,(5pi)/(2)) " define " f(x)= int(0)^(x) sqrt(t) sin t dt ...

    Text Solution

    |

  9. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  10. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  11. If f(x) = int(0)^(x) e^(t^2)(t-2)(t-3) dt " for all " x in (0,oo) t...

    Text Solution

    |

  12. The function f(x)=2|x|+|x+2|=||x|2|-2|x|| has a local minimum or a loc...

    Text Solution

    |

  13. Let f:[0,1] rarr R be a function . Suppose the fuction f is twice diff...

    Text Solution

    |

  14. Let f:[0,1] rarr R be a function.such that f(0)=f(1)=0 and f''(x)+f(x...

    Text Solution

    |

  15. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  16. Let f(x) be a polynomial of degree four having extreme vlaues at x=1 ...

    Text Solution

    |

  17. A cylindrica container is to be made from certain solid material with ...

    Text Solution

    |

  18. The minimum value of the function f(x)=x^(3//2)+x^(-3//2)-4(x+1/x) ...

    Text Solution

    |

  19. The least value of a in RR for which 4ax^2+1/x >= 1, for all x > 0, ...

    Text Solution

    |

  20. The abscissae of a point, tangent at which to the curve y = e^x sin x...

    Text Solution

    |