Home
Class 12
MATHS
If the line Ix + my +n=0 cuts the ell...

If the line Ix + my +n=0 cuts the ellipse `(x^(2))/(a^(2))+(Y^(2))/(b^(2))=1` in point eccentric angles differ by `pi//2`, then

A

`a^(2)l^(2)+b^(2)m^(2)=2n^(2)`

B

`a^(2)l^(2)+b^(2)m^(2)=n^(2)`

C

`a^(2)m^(2)+b^(2)l^(2)=2n^(2)`

D

`a^(2)m^(2)+b^(2)l^(2)=n^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

suppose the line lx+my +n=0 cuts the ellipse at P( a cos ` theta, b sin theta ) and Q ( a cos (pi//2+theta),b sin (pi//2+theta)),`
then these two point lie on the given line .
`therefore la cos theta + m b sin theta + n =0`
`and -la sin theta + m b sin cos theta + n=0`
`implies la cos theta + mb sin theta =- n and ,-la sin theta + mb cos theta =-n`
`implies (la cos theta + mb sin theta)^(2) +(-la sin theta +mb cos theta )^(2)=n^(2)+n^(2)`
`implies l^(2) a^(2) +m^(2)b^(2)=2n^(2)`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 cuts the ellipse ((x^(2))/(a^(2)))+((y^(2))/(b^(2)))=1 at points whose eccentric angles differ by (pi)/(2), then find the value of (a^(2)l^(2)+b^(2)m^(2))/(n^(2))

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

Find the condition so that the line px+qy=r intersects the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in points whose eccentric angles differ by (pi)/(4) .

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

The line x=at^(2) meets the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in the real points if

P and Q are two points on the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1 whose eccentric angles are differ by 90^(@) , then

If the line x+2y+4=0 cutting the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in points whose eccentric angies are 30^(@) and 60^(@) subtends right angle at the origin then its equation is

The line lx + my + n = 0 is a normal to (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 , provided

Find the locus of the foot of perpendicular from the centre of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 on the chord joining the points whose eccentric angles differ by (pi)/(2)

OBJECTIVE RD SHARMA-ELLIPSE-Chapter Test
  1. If the line Ix + my +n=0 cuts the ellipse (x^(2))/(a^(2))+(Y^(2))/...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. If the distance of a point on the ellipse (x^(2))/(6) + (y^(2))/(2) = ...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^3)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. The area of the triangle formed by three points on the ellipse x^2/a^2...

    Text Solution

    |

  14. If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x...

    Text Solution

    |

  15. If P(alpha,beta) is appoint on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=...

    Text Solution

    |

  16. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  17. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  18. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  19. The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^...

    Text Solution

    |

  20. The locus of points whose polars with respect to the ellipse x^(2)/a^(...

    Text Solution

    |

  21. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |