Home
Class 12
MATHS
If alphaa n dbeta are the eccentric a...

If `alphaa n dbeta` are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is `(sinalpha+sinbeta)/("sin"(alphabeta+))`

A

`(cos alpha + cos beta)/(cos (alpha - beta))`

B

`(sin alpha - sin beta)/(sin (alpha - beta))`

C

`(cos alpha - cos beta)/(cos (alpha - beta))`

D

`(sin alpha + sin beta)/(sin(alpha + beta))`

Text Solution

Verified by Experts

The correct Answer is:
D

The equation fo a chord joining points having eccentric angles `alpha` and `beta` is given by
`x/a cos ((alpha + beta)/(2)) + y/b sin ((alpha + beta)/(2)) = cos ((alpha - beta)/(2))`
If the passes through (ae, 0) then
`e cos ((alpha + beta)/(2)) = cos ((alpha - beta)/(2))`
`rArr e = (cos((alpha - beta)/(2))/(cos ((alpha + beta)/(2))`
`rArr e = (2 sin ((alpha + beta)/(2))cos((alpha - beta)/(2))/2 sin ((alpha + beta)/(2))cos((alpha + beta)/(2)) = (sin alpha + sin beta)/(sin (alpha + beta))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Exercise|82 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse,then prove that the eccentricity of the ellipse is (sin alpha+sin beta)/(sin(alpha+beta))

Define eccentricity of an ellipse

Knowledge Check

  • If alpha, beta are the eccentric angles of the extermities of a focal chord of an ellipse, then eccentricity of the ellipse is

    A
    `(sin alpha+ sin beta)/(sin(alpha+beta))`
    B
    `(cos alpha+ cos beta)/(cos(alpha+beta))`
    C
    `(sin(alpha+beta))/(sin(alpha+beta))`
    D
    none of these
  • Find the eccentricity of the ellipse (2)/( sqrt3)

    A
    `(2)/( sqrt3)`
    B
    `(sqrt3)/(2)`
    C
    `(1)/( sqrt3)`
    D
    `(3)/( sqrt2)`
  • If alpha,beta are the eccentric angles of the extremities of a focal chord of the ellipse x^(2)/16 + y^(2)/9 = 1 , then tan (alpha/2) tan(beta/2) =

    A
    `(sqrt7+4)/(sqrt7-4)`
    B
    `-9/23`
    C
    `(sqrt5-4)/(sqrt5+4)`
    D
    `(8sqrt7-23)/9`
  • Similar Questions

    Explore conceptually related problems

    If the distance between the foci of an ellipse is equal to its minor axis, then eccentricity e of the ellipse is :

    If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse,then write the eccentricity of the ellipse.

    If the angle between the lines joining the end points of minor axis of an ellipse with its foci is (pi)/(2) then the eccentricity of the ellipse is

    If the length of the major axis of an ellipse is 17/8 times the length of the minor axis, then the eccentricity of the ellipse is

    Find the eccentricity of the ellipse 4x^(2) + 9y^(2) = 36