Home
Class 12
MATHS
If CP and CD are semi-conjugate diameter...

If CP and CD are semi-conjugate diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, then `CP^(2) + CD^(2) =`

A

`a + b`

B

`a^(2) + b^(2)`

C

`a^(2) - b^(2)`

D

`sqrt(a^(2) + b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( CP^2 + CD^2 \) where \( CP \) and \( CD \) are semi-conjugate diameters of the ellipse given by the equation: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ### Step 1: Define the coordinates of points P and D Let the coordinates of point \( P \) on the ellipse be given by: \[ P(a \cos \theta, b \sin \theta) \] Since \( CP \) and \( CD \) are semi-conjugate diameters, the coordinates of point \( D \) can be expressed as: \[ D(a \cos(\theta + \frac{\pi}{2}), b \sin(\theta + \frac{\pi}{2})) \] Using the angle addition formulas, we can simplify the coordinates of \( D \): \[ D(a \cos(\theta + \frac{\pi}{2}), b \sin(\theta + \frac{\pi}{2})) = D(-a \sin \theta, b \cos \theta) \] ### Step 2: Calculate \( CP^2 \) The length \( CP \) can be calculated as follows: \[ CP^2 = (x_P - x_C)^2 + (y_P - y_C)^2 \] Assuming \( C \) is the center of the ellipse at the origin (0, 0), we have: \[ CP^2 = (a \cos \theta)^2 + (b \sin \theta)^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta \] ### Step 3: Calculate \( CD^2 \) Now we calculate \( CD^2 \): \[ CD^2 = (x_D - x_C)^2 + (y_D - y_C)^2 \] Again, assuming \( C \) is at the origin: \[ CD^2 = (-a \sin \theta)^2 + (b \cos \theta)^2 = a^2 \sin^2 \theta + b^2 \cos^2 \theta \] ### Step 4: Combine \( CP^2 \) and \( CD^2 \) Now, we add \( CP^2 \) and \( CD^2 \): \[ CP^2 + CD^2 = (a^2 \cos^2 \theta + b^2 \sin^2 \theta) + (a^2 \sin^2 \theta + b^2 \cos^2 \theta) \] Rearranging the terms, we get: \[ CP^2 + CD^2 = a^2 (\cos^2 \theta + \sin^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ CP^2 + CD^2 = a^2 \cdot 1 + b^2 \cdot 1 = a^2 + b^2 \] ### Final Result Thus, we conclude that: \[ CP^2 + CD^2 = a^2 + b^2 \]

To solve the problem, we need to find the expression for \( CP^2 + CD^2 \) where \( CP \) and \( CD \) are semi-conjugate diameters of the ellipse given by the equation: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ### Step 1: Define the coordinates of points P and D Let the coordinates of point \( P \) on the ellipse be given by: ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

CP and CD are conjugate semi-diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , The locus of the mid-point of PD, is

The area of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is

The locus of the point of intersection of tangents at the end-points of conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

OBJECTIVE RD SHARMA-ELLIPSE-Chapter Test
  1. If CP and CD are semi-conjugate diameters of the ellipse x^(2)/a^(2) +...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. If the distance of a point on the ellipse (x^(2))/(6) + (y^(2))/(2) = ...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^3)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. The area of the triangle formed by three points on the ellipse x^2/a^2...

    Text Solution

    |

  14. If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x...

    Text Solution

    |

  15. If P(alpha,beta) is appoint on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=...

    Text Solution

    |

  16. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  17. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  18. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  19. The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^...

    Text Solution

    |

  20. The locus of points whose polars with respect to the ellipse x^(2)/a^(...

    Text Solution

    |

  21. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |