Home
Class 12
MATHS
The locus of the point of intersection o...

The locus of the point of intersection of tangents at the end-points of conjugate diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, is

A

a circle

B

a parabala

C

an ellipse

D

a hyperbola

Text Solution

Verified by Experts

The correct Answer is:
C

Let CP and CD be two conjugate semi-diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`. Then, the eccentric angles of P and D are `theta` and `(pi)/(2) + theta` respectively. So, the coordinates of P and D are `(a cos theta, b sin theta)` and `( - a sin theta, b cos theta)` respectively.
The equations of the tangents at P and D are
`x/a cos theta + y/b sin theta = 1" "...(i)`
and, `- x/a sin theta + y/b cos theta = 1" "...(ii)`
Let (h, k) be the point of intersection of (i) and (ii). Then, `h/a cos theta + k/b sin theta = 1 " and " - h/a sin theta + k/b cos theta = 1`

`rArr (h/a cos theta + k/b sin theta)^(2) + (-h/a sin theta + k/b cos theta)^(2) = 1 + 1`
`rArr h^(2)/a^(2) + k^(2)/b^(2) = 2`
Hence, the locus of (h, k) is `x^(2)/a^(2) + y^(2)/b^(2) = 2` which represents an ellipse.
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of the tangents at the end-points of normal chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The locus of the point of intersection of the tangent at the endpoints of the focal chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(b

The locus of the point of intersection of the tangents at the ends of normal chord of the hyperbola x^(2)-y^(2)=a^(2) is

The locus of the point of intersection of tangents at the extremities of the chords of hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 which are tangents to the circle drawn on the line joining the foci as diameter is

Find the locus of point of intersection of tangents at the extremities of normal chords of the elipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

The locus of the point of intersection of the tangents at the extremities of the chords of the ellipse x^(2)+2y^(2)=6 which touch the ellipse x^(2)+4y^(2)=4, is x^(2)+y^(2)=4(b)x^(2)+y^(2)=6x^(2)+y^(2)=9(d) None of these

Find the locus of the point intersection of the tangents at the end of chord of elipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , which substends an angle alpha at origin.

Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola x^(2)-y^(2)=a^(2) is a^(2)(y^(2)-x^(2))=4x^(2)y^(2)

The locus of the point of intersection of tangents to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 at the points whose eccentric angles differ by pi//2 , is

OBJECTIVE RD SHARMA-ELLIPSE-Chapter Test
  1. The locus of the point of intersection of tangents at the end-points o...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. If the distance of a point on the ellipse (x^(2))/(6) + (y^(2))/(2) = ...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^3)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. The area of the triangle formed by three points on the ellipse x^2/a^2...

    Text Solution

    |

  14. If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x...

    Text Solution

    |

  15. If P(alpha,beta) is appoint on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=...

    Text Solution

    |

  16. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  17. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  18. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  19. The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^...

    Text Solution

    |

  20. The locus of points whose polars with respect to the ellipse x^(2)/a^(...

    Text Solution

    |

  21. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |