Home
Class 12
MATHS
CP and CD are conjugate semi-diameters o...

CP and CD are conjugate semi-diameters of the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1`, The locus of the mid-point of PD, is

A

`x^(2)/a^(2) + y^(2)/b^(2) = 2`

B

`x^(2)/a^(2) + y^(2)/b^(2) = 1/2`

C

`x^(2)/a^(2) + y^(2)/b^(2) = 4`

D

`x^(2)/a^(2) + y^(2)/b^(2) = 1/4`

Text Solution

Verified by Experts

The correct Answer is:
B

Let (h, k) be the mid-point of PD (See Fig. 11)
Then,
`2h = a cos theta - sin theta` and `2k = b sin theta + b cos theta`
`rArr (2h)/(a) = cos theta - sin theta` and `(2k)/(b) = sin theta + cos theta`
`rArr (4h^(2))/(a^(2)) + (4k^(2))/(b^(2)) = (cos theta - sin theta)^(2) + (sin theta + cos theta)^(2)`
`rArr h^(2)/a^(2) + k^(2)/b^(2) = 1/2`
Hence, the locus of (h, k) is `x^(2)/a^(2) + y^(2)/b^(2) = 1/2`.
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|59 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

If CP and CD are semi-conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , then CP^(2) + CD^(2) =

The locus of the point of intersection of tangents at the end-points of conjugate diameters of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

For the ellipse,(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 the equation of the diameter conjugate ax-by=0 is-

OBJECTIVE RD SHARMA-ELLIPSE-Chapter Test
  1. CP and CD are conjugate semi-diameters of the ellipse x^(2)/a^(2) + y^...

    Text Solution

    |

  2. Find the maximum area of an isosceles triangle inscribed in the ellip...

    Text Solution

    |

  3. A tangent to the ellipse x^2+4y^2=4 meets the ellipse x^2+2y^2=6 at P&...

    Text Solution

    |

  4. If the distance of a point on the ellipse (x^(2))/(6) + (y^(2))/(2) = ...

    Text Solution

    |

  5. If the minor axis of an ellipse subtends an angle of 60^(@) at each fo...

    Text Solution

    |

  6. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^3)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  7. The equation of the normal at the point P (2, 3) on the ellipse 9x^(2)...

    Text Solution

    |

  8. For the ellipse 3x^(2) + 4y^(2) + 6x - 8y - 5 = 0 the eccentrically, i...

    Text Solution

    |

  9. Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2)...

    Text Solution

    |

  10. If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + ...

    Text Solution

    |

  11. if vertices of an ellipse are (-4,1),(6,1) and x-2y=2 is focal chord t...

    Text Solution

    |

  12. If (-4, 3) and (8, 3) are the vertices of an ellipse whose eccentricit...

    Text Solution

    |

  13. The area of the triangle formed by three points on the ellipse x^2/a^2...

    Text Solution

    |

  14. If the chord joining points P(alpha)a n dQ(beta) on the ellipse ((x...

    Text Solution

    |

  15. If P(alpha,beta) is appoint on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=...

    Text Solution

    |

  16. The tangent at any point P on the ellipse meets the tangents at the ve...

    Text Solution

    |

  17. P is a point on the circle x^(2) + y^(2) = c^(2). The locus of the mid...

    Text Solution

    |

  18. The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y...

    Text Solution

    |

  19. The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^...

    Text Solution

    |

  20. The locus of points whose polars with respect to the ellipse x^(2)/a^(...

    Text Solution

    |

  21. if the chord of contact of tangents from a point P to the hyperbola x...

    Text Solution

    |