Home
Class 12
MATHS
Tangents are drawn to the ellipse (x^2)/...

Tangents are drawn to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,(a > b),` and the circle `x^2+y^2=a^2` at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by `tan^(-1)((a-b)/(2sqrt(a b)))` (b) `tan^(-1)((a+b)/(2sqrt(a b)))` `tan^(-1)((2a b)/(sqrt(a-b)))` (d) `tan^(-1)((2a b)/(sqrt(a+b)))`

A

`tan^(-1)((a - b)/(2 sqrt(ab)))`

B

`tan^(-1)((a + b)/(2 sqrt(ab)))`

C

`tan^(-1)((2ab)/(sqrt(a-b)))`

D

`tan^(-1)((2ab)/(sqrt(a+b)))`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `P (a cos theta, a sin theta)` be a point on the ellipse `x^(2)/a^(2) + y^(2)/b^(2) = 1` and `Q (a cos theta, a sin theta)` be the corresponding point on the auxiliary circle `x^(2) + y^(2) = a^(2)`. The equations of tangents at P and Q to the respective curves are
`x/a cos theta + y/b sin theta = 1`
and , `x cos theta + y sin theta = a` respectively
Let `alpha` be the acute angle between these tangents. Then,
`tan alpha = |(-cot theta + b/a cot theta)/(1 + b/a cot^(2)theta)|`
`tan alpha = |(a - b)/(a tan theta + b cot theta)|`
Now, `AM ge GM`
`rArr (a tan theta + b cot theta)/(2) ge sqrt(a tan theta xx b cot theta)`
`rArr (a tan theta + b cot theta)/(2) ge sqrt(ab) rArr a tan theta + b cot theta ge 2 sqrt(ab)`
`therefore tan alpha le |(a - b)/(2 sqrt(ab))|`
Hence, the greatest value of alpha is `tan^(-1)((a - b)/(2sqrt(ab)))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Exercise|82 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

Tangents are drawn to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,(a > b), and the circle x^2+y^2=a^2 at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) tan^(-1)((a-b)/(2sqrt(a b))) (B) tan^(-1)((a+b)/(2sqrt(a b))) (C) tan^(-1)((2a b)/(sqrt(a-b))) (D) tan^(-1)((2a b)/(sqrt(a+b)))

a((sqrt(a)+sqrt(b))/(2b sqrt(a)))^(-1)+b((sqrt(a)+sqrt(b))/(2a sqrt(b)))^(-1)

int(1)/(a^(2)-b^(2)cos^(2)x)dx(a>b)=(1)/(a sqrt(a^(2)-b^(2)))tan^(-1)[(a tan x)/(sqrt(a^(2)-b^(2)))]+c

y = tan ^ (- 1) [sqrt ((ab) / (a + b)) (tan x) / (2)]

If 3tan^(-1)((1)/(2+sqrt(3)))-(tan^(-1)1)/(x)=(tan^(-1)1)/(3) then x is equal to 1(b)2(c)3(d)sqrt(2)

Prove that 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

2tan^(-1)(sqrt((a-b)/(a+b))tan((theta)/(2)))=cos^(-1)((a cos theta+b)/(a+b cos theta))

Prove that: tan[(pi)/(4)+(1)/(2) tan^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)tan^(-1)((a)/(b))]=(2sqrt(a^(2)+b^(2)))/(b)

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)((sqrt(a-x))/(sqrt(x-b))) then (dy)/(dx)=

OBJECTIVE RD SHARMA-ELLIPSE-Section I - Solved Mcqs
  1. The focus of an ellipse is (-1, -1) and the corresponding directrix is...

    Text Solution

    |

  2. The equation of the ellipse with its centre at (1, 2), one focus at (6...

    Text Solution

    |

  3. Tangents are drawn to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1,(a > b), a...

    Text Solution

    |

  4. The area (in sq. units) of the quadrilateral formed by the tangents...

    Text Solution

    |

  5. If alpha-beta= constant, then the locus of the point of intersection o...

    Text Solution

    |

  6. Let S=(3,4) and S'=(9,12) be two foci of an ellipse. If the coordinate...

    Text Solution

    |

  7. Let Sa n dS ' be two foci of the ellipse (x^2)/(a^3)+(y^2)/(b^2)=1 . I...

    Text Solution

    |

  8. The locus of the foot of the perpendicular from the foci an any tangen...

    Text Solution

    |

  9. The locus of the point of intersection of tangents to the ellipse x^(2...

    Text Solution

    |

  10. The locus of the point of intersection of tangents to the ellipse x^(2...

    Text Solution

    |

  11. Find the locus of the foot of the perpendicular drawn from the cent...

    Text Solution

    |

  12. Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0, be the end points of the...

    Text Solution

    |

  13. The locus of the point of intersection of perpendicular tangents to x^...

    Text Solution

    |

  14. Let S=(3,4) and S'=(9,12) be two foci of an ellipse. If the coordinate...

    Text Solution

    |

  15. The tangent at a point P(acosvarphi,bsinvarphi) of the ellipse (x^2)/(...

    Text Solution

    |

  16. Let d1a n dd2 be the length of the perpendiculars drawn from the foci ...

    Text Solution

    |

  17. A bar of given length moves with its extremities on two fixed strai...

    Text Solution

    |

  18. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  19. From a point P perpendicular tangents PQ and PR are drawn to ellipse x...

    Text Solution

    |

  20. Tangents are drawn from the point P(3, 4) to the ellipse x^2/9+y^2/4=1...

    Text Solution

    |