Home
Class 12
MATHS
The tangent at a point P(acosvarphi,bsin...

The tangent at a point `P(acosvarphi,bsinvarphi)` of the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` meets its auxiliary circle at two points, the chord joining which subtends a right angle at the center. Find the eccentricity of the ellipse.

A

`(1)/(sqrt(1+cos^(2)theta))`

B

`(1)/(sqrt(1+sin^(2)theta))`

C

`sqrt(1+cos^(2)theta)`

D

`sqrt(1+sin^(2)theta)`

Text Solution

Verified by Experts

The correct Answer is:
B

The equation of the tangent at P`(theta)` to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` is
`(x)/(a)costheta+(y)/(b)sintheta=1`
The combined equation of the lines CQ and CR is
`x^(2)+y^(2)=a^(2)((x)/(a)costheta+(y)/(b)sintheta)^(2)`
The lines represented by this equation and at right angle.
`therefore 1-cos^(2)theta+1(a^(2))/(b^(2))sin^(2)theta=0`
`rArr sin^(2)theta+1-(1)/(1-e^(2))sin^(2)theta=0`
`rArr 1-e^(2)=(sin^(2)theta)/(1+sin^(2)theta)rArr e^(2)=(1)/(1+sin^(2)theta)rArr e=(1)/(sqrt(1+sin^(2)theta))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Exercise|82 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

The tangent at a point P(a cos phi,b sin phi) of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 meets its auxiliary circle at two points,the chord joining which subtends a right angle at the center.Find the eccentricity of the ellipse.

If the tangent at theta on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 meets the auxiliary circle at two points which subtend a right angle at the centre then e^(2)(2-cos^(2)theta) =

The tangent at the point alpha on the ellipse x^2/a^2+y^2/b^2=1 meets the auxiliary circle in two points which subtends a right angle at the centre, then the eccentricity 'e' of the ellipse is given by the equation (A) e^2(1+cos^2alpha)=1 (B) e^2(cosec^2alpha-1)=1 (C) e^2(1+sin^2alpha)=1 (D) e^2(1+tan^2alpha)=1

If the tangent at theta on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 meets the auxiliary circle at two points which subtend a right angle at the centre,then e^(2)(2-cos^(2)theta)=

The tangent at the point alpha on a standard ellipse meets the auxiliary circle in two points which subtends a right angle at the centre. Show that the eccentricity of the ellipse is (1+ sin^2aplha)^-1/2 .

If the chord joining the points (2,-1),(1,-2) subtends a right angle at the centre of the circle,then its centre and radius are

" Eccentricity of ellipse " (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 " such that the line joining the foci subtends a right angle only at two points on ellipse is "

At some point P on the ellipse the segments ss' subtends a right angle then its eccentricity

OBJECTIVE RD SHARMA-ELLIPSE-Section I - Solved Mcqs
  1. Find the locus of the foot of the perpendicular drawn from the cent...

    Text Solution

    |

  2. Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0, be the end points of the...

    Text Solution

    |

  3. The locus of the point of intersection of perpendicular tangents to x^...

    Text Solution

    |

  4. Let S=(3,4) and S'=(9,12) be two foci of an ellipse. If the coordinate...

    Text Solution

    |

  5. The tangent at a point P(acosvarphi,bsinvarphi) of the ellipse (x^2)/(...

    Text Solution

    |

  6. Let d1a n dd2 be the length of the perpendiculars drawn from the foci ...

    Text Solution

    |

  7. A bar of given length moves with its extremities on two fixed strai...

    Text Solution

    |

  8. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  9. From a point P perpendicular tangents PQ and PR are drawn to ellipse x...

    Text Solution

    |

  10. Tangents are drawn from the point P(3, 4) to the ellipse x^2/9+y^2/4=1...

    Text Solution

    |

  11. Tangents are drawn from the point P(3,4) to the ellipse x^2/9+y^2/4=1...

    Text Solution

    |

  12. Tangents are drawn from the point P(3,4) to the ellipsex^2/9+y^2/4=...

    Text Solution

    |

  13. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  14. If the normal from the point P(h,1) on the ellipse x^2/6+y^2/3=1 is pe...

    Text Solution

    |

  15. the locus of the foot of perpendicular drawn from the centre of the el...

    Text Solution

    |

  16. Let E(1) and E(2) two ellipse whose centres are at the orgin. Then maj...

    Text Solution

    |

  17. Suppose that the foci of the ellipse (x^(2))/(9)+(y^(2))/(5)=1 are (f(...

    Text Solution

    |

  18. A line intesects the ellipse (x^(2))/(4a^(2))+(y^(2))/(a^(2))=1 at A a...

    Text Solution

    |

  19. Let F(1)(x(1),0)and F(2)(x(2),0)" for "x(1)lt0 and x(2)gt0 the foci of...

    Text Solution

    |

  20. If the tangents to the ellipse at M and N meet at R and the normal to ...

    Text Solution

    |