Home
Class 12
MATHS
The normal at a point P on the ellipse x...

The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of `M` intersects the latus rectums of the given ellipse at points. `(+-((3sqrt(5)))/2+-2/7)` (b) `(+-((3sqrt(5)))/2+-(sqrt(19))/7)` `(+-2sqrt(3),+-1/7)` (d) `(+-2sqrt(3)+-(4sqrt(3))/7)`

A

`(pm(3sqrt5)/(2),pm(2)/(7))`

B

`(pm(3sqrt5)/(2),pm(sqrt19)/(4))`

C

`(pm2sqrt3,pm(1)/(7))`

D

`(pm2sqrt3,pm(4sqrt3)/(7))`

Text Solution

Verified by Experts

The correct Answer is:
C

Let P`(4costheta, 2sintheta)` be a point on the given ellipse. The equation of the normal to P is
`(4sectheta)x-(2cosectheta)y=12`
[Using : `ax sec theta -by cosec theta = a^(2)-b^(2)`]
This meets x-axis at `Q(3 costheta, 0)`
Let (h,k) be the coordinates of M i.e. the mid-point of PQ. Then,
`h=(7)/(2)costheta,ksinthetarArr((2h)/(7))^(2)+k^(2)=1`
Hence, the locus of M is `(4x^(2))/(49)+y^(2)=1`
Let e the eccentricity of the given ellipse. Then,
`e=sqrt(1-(4)/(16)=(sqrt3)/(2))`
So, the equation of the latusecta of the given ellipse are `x=pm 2sqrt3`. These lines intersect the ellipse (i) at
`(4)/(49)xx12+y^(2)=1rArry=pm(1)/(7)`
Hence, required coordinates are `(pm2sqrt3,pm(1)/(7))`
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Exercise|82 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a)(+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c)(+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

(2sqrt(7))/(sqrt(5)-sqrt(3))

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

(1)/(sqrt(11-2sqrt(30)))-(3)/(sqrt(7-2sqrt(10)))-(4)/(sqrt(8+4sqrt(3)))

The eccentricity of the ellipse 4x^(2)+9y^(2)=36 is (1)/(2sqrt(3)) b.(1)/(sqrt(3)) c.(sqrt(5))/(3) d.(sqrt(5))/(6)

tan^(2)((1)/(2)sin^(-1)(2)/(3))= (A) (7+3sqrt(3))/(2) (B) (7-5sqrt(3))/(2) (C) (7-3sqrt(5))/(2) (D) (7+5sqrt(3))/(2)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

OBJECTIVE RD SHARMA-ELLIPSE-Section I - Solved Mcqs
  1. Find the locus of the foot of the perpendicular drawn from the cent...

    Text Solution

    |

  2. Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0, be the end points of the...

    Text Solution

    |

  3. The locus of the point of intersection of perpendicular tangents to x^...

    Text Solution

    |

  4. Let S=(3,4) and S'=(9,12) be two foci of an ellipse. If the coordinate...

    Text Solution

    |

  5. The tangent at a point P(acosvarphi,bsinvarphi) of the ellipse (x^2)/(...

    Text Solution

    |

  6. Let d1a n dd2 be the length of the perpendiculars drawn from the foci ...

    Text Solution

    |

  7. A bar of given length moves with its extremities on two fixed strai...

    Text Solution

    |

  8. The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at...

    Text Solution

    |

  9. From a point P perpendicular tangents PQ and PR are drawn to ellipse x...

    Text Solution

    |

  10. Tangents are drawn from the point P(3, 4) to the ellipse x^2/9+y^2/4=1...

    Text Solution

    |

  11. Tangents are drawn from the point P(3,4) to the ellipse x^2/9+y^2/4=1...

    Text Solution

    |

  12. Tangents are drawn from the point P(3,4) to the ellipsex^2/9+y^2/4=...

    Text Solution

    |

  13. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  14. If the normal from the point P(h,1) on the ellipse x^2/6+y^2/3=1 is pe...

    Text Solution

    |

  15. the locus of the foot of perpendicular drawn from the centre of the el...

    Text Solution

    |

  16. Let E(1) and E(2) two ellipse whose centres are at the orgin. Then maj...

    Text Solution

    |

  17. Suppose that the foci of the ellipse (x^(2))/(9)+(y^(2))/(5)=1 are (f(...

    Text Solution

    |

  18. A line intesects the ellipse (x^(2))/(4a^(2))+(y^(2))/(a^(2))=1 at A a...

    Text Solution

    |

  19. Let F(1)(x(1),0)and F(2)(x(2),0)" for "x(1)lt0 and x(2)gt0 the foci of...

    Text Solution

    |

  20. If the tangents to the ellipse at M and N meet at R and the normal to ...

    Text Solution

    |