Home
Class 11
PHYSICS
A wall has two layers A and B, each made...

A wall has two layers A and B, each made of different material. Both the layers have the same thickness. The thermal conductivity of the meterial of A is twice that of B . Under thermal equilibrium, the temperature difference across the wall is `36^@C.` The temperature difference across the layer A is

A

`6^@C`

B

`12^@C`

C

`18^@C`

D

`24^@C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the temperature difference across layer A of the wall consisting of two layers A and B with different thermal conductivities. Let's break down the solution step by step. ### Step 1: Understand the Problem We have two layers A and B, each with the same thickness (L). The thermal conductivity of layer A (K_A) is twice that of layer B (K_B). The total temperature difference across the wall is given as 36°C. ### Step 2: Define Variables Let: - K_A = 2K_B (thermal conductivity of layer A) - K_B = K_B (thermal conductivity of layer B) - ΔT_total = θ_A - θ_B = 36°C (total temperature difference across the wall) - θ_C = temperature at the junction between layers A and B. ### Step 3: Use the Heat Conduction Equation According to the principle of thermal equilibrium, the heat conducted through both layers must be equal. The heat flow (Q) through a material is given by: \[ Q = \frac{K \cdot A \cdot \Delta T}{L} \] Since both layers have the same area (A) and thickness (L), we can ignore these factors for our calculations. For layer A: \[ Q_A = K_A \cdot \Delta T_A = K_A \cdot (θ_A - θ_C) \] For layer B: \[ Q_B = K_B \cdot \Delta T_B = K_B \cdot (θ_C - θ_B) \] ### Step 4: Set the Heat Flow Equal Since \( Q_A = Q_B \): \[ K_A \cdot (θ_A - θ_C) = K_B \cdot (θ_C - θ_B) \] Substituting \( K_A = 2K_B \): \[ 2K_B \cdot (θ_A - θ_C) = K_B \cdot (θ_C - θ_B) \] ### Step 5: Simplify the Equation Dividing through by \( K_B \) (assuming \( K_B \neq 0 \)): \[ 2(θ_A - θ_C) = θ_C - θ_B \] ### Step 6: Rearranging the Equation Rearranging gives: \[ 2θ_A - 2θ_C = θ_C - θ_B \] \[ 2θ_A + θ_B = 3θ_C \] ### Step 7: Express θ_B in Terms of θ_A From the total temperature difference: \[ θ_B = θ_A - 36 \] ### Step 8: Substitute θ_B into the Equation Substituting \( θ_B \) into the equation: \[ 2θ_A + (θ_A - 36) = 3θ_C \] \[ 3θ_A - 36 = 3θ_C \] ### Step 9: Solve for θ_C Dividing through by 3: \[ θ_C = θ_A - 12 \] ### Step 10: Find the Temperature Difference Across Layer A The temperature difference across layer A is: \[ ΔT_A = θ_A - θ_C \] Substituting for \( θ_C \): \[ ΔT_A = θ_A - (θ_A - 12) = 12°C \] ### Final Answer The temperature difference across layer A is **12°C**.

To solve the problem, we need to find the temperature difference across layer A of the wall consisting of two layers A and B with different thermal conductivities. Let's break down the solution step by step. ### Step 1: Understand the Problem We have two layers A and B, each with the same thickness (L). The thermal conductivity of layer A (K_A) is twice that of layer B (K_B). The total temperature difference across the wall is given as 36°C. ### Step 2: Define Variables Let: - K_A = 2K_B (thermal conductivity of layer A) ...
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    SUNIL BATRA (41 YEARS IITJEE PHYSICS)|Exercise JEE Main And Advanced|54 Videos
  • LAWS OF MOTION

    SUNIL BATRA (41 YEARS IITJEE PHYSICS)|Exercise JEE Main And Advanced|79 Videos

Similar Questions

Explore conceptually related problems

A wall has two layers A and B, each made of different materials. Both layers are of same thickness. But, the thermal conductivity of material A is twice that of B. If, in the steady state, the temperature difference across the wall is 24^(@)C , then the temperature difference across the layer B is :

A wall has two layers A and B each made of different materials. The layer A is 10cm thick and B is 20 cm thick. The thermal conductivity of A is thrice that of B. Under thermal equilibrium temperature difference across the wall is 35^@C . The difference of temperature across the layer A is

A partition wall has two layers A and B, in contact, each made of a different material. They have the same thickness but the thermal conductivity of layer A is twice that of layer B. If the steady state temperature difference across the wall is 60 K, then the corresponding difference across the layer A is

A partition wall has two layers of different materials A and B in contact with each other. They have the same thickness but the thermal conductivity of layer A is twice that of layer B. At steady state the temperature difference across the layer B is 50 K, then the corresponding difference across the layer A is

A wall has two layers A and B each made of different materials. The thickness of both the layers is the same. The thermal conductivity of A, K_(A) = 3K_(B) . The temperature different across the wall is 20^(@)C in thermal equilibrium

A composite slab consists of two parts of equal thickness. The thermal conductivity of one is twice that of the other. What will be the ratio of temperature difference across the two layers in the state of equilibrium ?

If a body A is in thermal equilibrium with three different bodies B, C and D then

SUNIL BATRA (41 YEARS IITJEE PHYSICS)-HEAT AND THERMODYNAMICS-JEE Main And Advanced
  1. A constant volume gas thermometer works on

    Text Solution

    |

  2. A metal ball immersed in alcohol weights W1 at 0^@C and W2 at 50^@C. T...

    Text Solution

    |

  3. A wall has two layers A and B, each made of different material. Both t...

    Text Solution

    |

  4. An ideal monatomic gas is taken round the cycle ABCDA as shown in the ...

    Text Solution

    |

  5. If one mole of a monatomic gas (gamma=5/3) is mixed with one mole of a...

    Text Solution

    |

  6. From the following statements concerning ideal gas at any given temper...

    Text Solution

    |

  7. Three rods of identical area of cross-section and made from the same m...

    Text Solution

    |

  8. Two metallic spheres S1 and S2 are mode of the same material and have ...

    Text Solution

    |

  9. The average translational kinetic energy of O2 (relative molar mass 32...

    Text Solution

    |

  10. A vessel contains 1 mole of O2 gas (relative molar mass 32) at a tempe...

    Text Solution

    |

  11. A spherical black body with a radius of 12cm radiates 450W power at 50...

    Text Solution

    |

  12. A closed compartment containing gas is moving with some acceleration i...

    Text Solution

    |

  13. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at te...

    Text Solution

    |

  14. The ratio of the speed of sound in nitrogen gas to that in helium gas,...

    Text Solution

    |

  15. A monatomic ideal gas, initially at temperature T1, is enclosed in a c...

    Text Solution

    |

  16. A block of ice at -10^@C is slowly heated and converted to steam at 10...

    Text Solution

    |

  17. An ideal gas is initially at temperature T and volume V. Its volume is...

    Text Solution

    |

  18. Starting with the same initial conditions, an ideal gas expands from v...

    Text Solution

    |

  19. The plots of intensity versus wavelength for three black bodies at tem...

    Text Solution

    |

  20. Three rods made of same material and having the same cross-section hav...

    Text Solution

    |