Home
Class 12
MATHS
The integral int(dx)/(x^(2)(x^(4)+1)^(3/...

The integral `int(dx)/(x^(2)(x^(4)+1)^(3//4))` equal

A

`((x^(4)+1)/(x^(4)))^(1//4)+C`

B

`(x^(4)+1)^(1//4)+C`

C

`-(x^(4)+1)^(1//4)+C`

D

`-((x^(4)+1)/(x^(4)))^(1//4)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))=int(dx)/(x^(5)(1+(1)/(x^(4)))^((3)/(4)))`
Put `1+(1)/(x^(4))=t^(4)" "rArr" "-(4)/(x^(5))dx=4t^(3)dt`
`rArr" "(dx)/(x^(5))=-t^(3)dt`
`therefore" "l=int(-t^(3)dt)/(t^(3))=-intdt=-t+C=-(1+(1)/(x^(4)))^((1)/(4))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The integral int(dx)/((x^(4)-1)^((1)/(4))) equal:

The integral int(dx)/((x+4)^(8//7)(x-3)^(6//7)) is equal to : (where C is constant of integration)

The integral I = int (dx)/((x+1)^(3//4)(x-2)^(5//4)) is equal to

(a) Integrate :int(dx)/(x^(1/2)+x^((1)/(3)))

The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to: (Here C is a constant of integration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

Integrate: int(3 x^2)/(x^(3)-1)dx