Home
Class 12
MATHS
int(cos 4x-1)/(cot x-tanx)dx is equal to...

`int(cos 4x-1)/(cot x-tanx)dx` is equal to

A

`-(1)/(2)cos 4x+C`

B

`-(1)/(4)cos 4x+C`

C

`-(1)/(2)sin 2x+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite the denominator: \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \] ### Step 2: Rewrite the Integral Now substituting the rewritten denominator into the integral gives: \[ I = \int \frac{\cos 4x - 1}{\frac{\cos^2 x - \sin^2 x}{\sin x \cos x}} \, dx = \int \frac{(\cos 4x - 1) \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] ### Step 3: Simplify the Numerator We can use the identity \( \cos 4x = 2\cos^2 2x - 1 \) to rewrite \( \cos 4x - 1 \): \[ \cos 4x - 1 = 2\cos^2 2x - 2 = 2(\cos^2 2x - 1) = -2\sin^2 2x \] Thus, the integral becomes: \[ I = \int \frac{-2\sin^2 2x \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] ### Step 4: Use Substitution Let \( T = \cos 2x \). Then, differentiating gives: \[ dT = -2\sin 2x \, dx \quad \Rightarrow \quad dx = \frac{dT}{-2\sin 2x} \] Substituting this into the integral, we have: \[ I = \int \frac{-2\sin^2 2x \sin x \cos x}{\cos^2 x - \sin^2 x} \cdot \frac{dT}{-2\sin 2x} \] This simplifies to: \[ I = \int \frac{\sin 2x \sin x \cos x}{\cos^2 x - \sin^2 x} \, dT \] ### Step 5: Further Simplification Using the identity \( \sin 2x = 2\sin x \cos x \), we can simplify: \[ I = \int \frac{2\sin^2 x \cos^2 x}{\cos^2 x - \sin^2 x} \, dT \] ### Step 6: Final Integration Now we can integrate: \[ I = \frac{1}{2} \int \left( \frac{1}{T} - T \right) dT \] This gives: \[ I = \frac{1}{2} \left( \ln |T| - \frac{T^2}{2} \right) + C \] Substituting back \( T = \cos 2x \): \[ I = \frac{1}{2} \left( \ln |\cos 2x| - \frac{\cos^2 2x}{2} \right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{2} \ln |\cos 2x| - \frac{\cos^2 2x}{4} + C \]

To solve the integral \( I = \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, we can rewrite the denominator: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(cos4x-1)/(cotx-tanx)dx is equal to

int(1+cos 4x)/(cotx-tanx)dx=

int(1+cos4x)/(cot x-tan x)dx

int(1+cos4x)/(cot x-tan x)dx

l=int(cos^(4)x+1)/(cotx-tanx)dx is equal to

I=int(cos^(4)x+1)/(cot x-tan x)dx is equal to

int(cot x-tan x)dx is equal to

int e^(cot x)(cos x-cos ecx)dx is equal to :