Home
Class 12
MATHS
If intcos^(4)xdx=Ax +B sin 2x+C sin 4x+D...

If `intcos^(4)xdx=Ax +B sin 2x+C sin 4x+D`, then `{A,B,C}` equals to

A

`{(3)/(8),(1)/(32),(1)/(4)}`

B

`{(3)/(8),(1)/(4),(1)/(32)}`

C

`{(1)/(32),(1)/(4),(3)/(8)}`

D

`{(1)/(4),(3)/(8),(1)/(32)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^4 x \, dx \) and express it in the form \( Ax + B \sin 2x + C \sin 4x + D \), we will follow these steps: ### Step 1: Rewrite \( \cos^4 x \) We start by using the identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, \[ \cos^4 x = \left( \cos^2 x \right)^2 = \left( \frac{1 + \cos 2x}{2} \right)^2 = \frac{(1 + \cos 2x)^2}{4} \] ### Step 2: Expand \( \cos^4 x \) Now we expand \( (1 + \cos 2x)^2 \): \[ (1 + \cos 2x)^2 = 1 + 2\cos 2x + \cos^2 2x \] Next, we substitute \( \cos^2 2x \) using the identity again: \[ \cos^2 2x = \frac{1 + \cos 4x}{2} \] So, \[ (1 + \cos 2x)^2 = 1 + 2\cos 2x + \frac{1 + \cos 4x}{2} = 1 + 2\cos 2x + \frac{1}{2} + \frac{1}{2}\cos 4x = \frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x \] ### Step 3: Substitute back into the integral Now substituting back into the integral: \[ \int \cos^4 x \, dx = \int \frac{1}{4} \left( \frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x \right) \, dx \] This simplifies to: \[ \int \cos^4 x \, dx = \frac{1}{4} \int \left( \frac{3}{2} + 2\cos 2x + \frac{1}{2}\cos 4x \right) \, dx \] ### Step 4: Integrate each term Now we integrate each term separately: 1. \( \int \frac{3}{2} \, dx = \frac{3}{2}x \) 2. \( \int 2\cos 2x \, dx = 2 \cdot \frac{\sin 2x}{2} = \sin 2x \) 3. \( \int \frac{1}{2}\cos 4x \, dx = \frac{1}{2} \cdot \frac{\sin 4x}{4} = \frac{1}{8}\sin 4x \) Putting it all together: \[ \int \cos^4 x \, dx = \frac{1}{4} \left( \frac{3}{2}x + \sin 2x + \frac{1}{8}\sin 4x \right) + C \] \[ = \frac{3}{8}x + \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C \] ### Step 5: Identify coefficients From the expression \( Ax + B \sin 2x + C \sin 4x + D \), we can identify: - \( A = \frac{3}{8} \) - \( B = \frac{1}{4} \) - \( C = \frac{1}{32} \) ### Final Answer Thus, the values of \( \{A, B, C\} \) are: \[ \{A, B, C\} = \left\{ \frac{3}{8}, \frac{1}{4}, \frac{1}{32} \right\} \]

To solve the integral \( \int \cos^4 x \, dx \) and express it in the form \( Ax + B \sin 2x + C \sin 4x + D \), we will follow these steps: ### Step 1: Rewrite \( \cos^4 x \) We start by using the identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If intsin^(4)xdx=ax+bsin2x+c sin 4x+d, then (a, b, c)-=

int sin2x sin^(4)xdx

intcos^3x/(sin^4x)dx=?

int(cos9x+cos6x)/(2cos5x-1)dx=A sin4x+B sin x+C, then A+B is equal to : ( A) (1)/(2)(B)(3)/(4)(C)2(D)(5)/(4)

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k , then