Home
Class 12
MATHS
int(x^(3)-1)^(1//3)x^(5)dx is equal to...

`int(x^(3)-1)^(1//3)x^(5)dx` is equal to

A

`(1)/(7)(x^(3)+1)^(1//3)+(1)/(4)(x^(3)-1)^(3//4)+C`

B

`(1)/(7)(x^(3)-1)^(7//3)+(1)/(4)(x^(3)-1)^(4//3)+C`

C

`(3)/(7)(x^(3)-1)^(7//3)+(1)/(4)(x^(3)-1)^(4//3)+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x^3 - 1)^{1/3} x^5 \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x^3 - 1 \). Then, we differentiate to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] ### Step 2: Express \( x^5 \) in terms of \( t \) From our substitution, we have: \[ x^3 = t + 1 \quad \Rightarrow \quad x = (t + 1)^{1/3} \] Thus, \[ x^5 = (t + 1)^{5/3} \] ### Step 3: Substitute into the integral Now we substitute \( t \) and \( dx \) into the integral: \[ \int (x^3 - 1)^{1/3} x^5 \, dx = \int t^{1/3} (t + 1)^{5/3} \cdot \frac{dt}{3x^2} \] We need to express \( x^2 \) in terms of \( t \): \[ x^2 = (t + 1)^{2/3} \] So, \[ dx = \frac{dt}{3(t + 1)^{2/3}} \] ### Step 4: Rewrite the integral Now we can rewrite the integral: \[ \int t^{1/3} (t + 1)^{5/3} \cdot \frac{dt}{3(t + 1)^{2/3}} = \frac{1}{3} \int t^{1/3} (t + 1)^{5/3 - 2/3} \, dt = \frac{1}{3} \int t^{1/3} (t + 1)^{3/3} \, dt \] This simplifies to: \[ \frac{1}{3} \int t^{1/3} (t + 1) \, dt \] ### Step 5: Expand and integrate Now we expand the integrand: \[ \frac{1}{3} \int (t^{1/3} t + t^{1/3}) \, dt = \frac{1}{3} \int (t^{4/3} + t^{1/3}) \, dt \] Now we can integrate term by term: \[ \frac{1}{3} \left( \frac{t^{4/3 + 1}}{4/3 + 1} + \frac{t^{1/3 + 1}}{1/3 + 1} \right) + C = \frac{1}{3} \left( \frac{t^{7/3}}{7/3} + \frac{t^{4/3}}{4/3} \right) + C \] This simplifies to: \[ \frac{1}{3} \left( \frac{3}{7} t^{7/3} + \frac{3}{4} t^{4/3} \right) + C = \frac{1}{7} t^{7/3} + \frac{1}{4} t^{4/3} + C \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = x^3 - 1 \): \[ = \frac{1}{7} (x^3 - 1)^{7/3} + \frac{1}{4} (x^3 - 1)^{4/3} + C \] ### Final Answer Thus, the final answer is: \[ \int (x^3 - 1)^{1/3} x^5 \, dx = \frac{1}{7} (x^3 - 1)^{7/3} + \frac{1}{4} (x^3 - 1)^{4/3} + C \]

To solve the integral \( \int (x^3 - 1)^{1/3} x^5 \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x^3 - 1 \). Then, we differentiate to find \( dt \): \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int(x-3)/((x-1)^(3)).e^(x)dx is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(x^(3)-x)/(1+x^(6))dx is equal to

int(1-x^(5))/(x(1+x^(5)))dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(dx)/((x^(3)-1)^((2)/(3))x^(2)) is equal to

int(x^(3)dx)/(x^(2)+1)^(3) is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to