Home
Class 12
MATHS
int |x|ln|x|dx equals (x ne 0)...

`int |x|ln|x|dx` equals `(x ne 0)`

A

`(x^(2))/(2)ln|x|-(x^(2))/(4)+C`

B

`(1)/(2)x|x|lnx+(1)/(4)x|x|+C`

C

`-(x^(2))/(2)ln|x|+(x^(2))/(4)+C`

D

`(1)/(2)x|x|ln|x|-(1)/(4)x|x|+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Case I If x gt 0, then `|x|=x`
On applying integration by parts, we get
`therefore" "=intx ln x dx=ln x.(x^(2))/(2)-int(1)/(x).(x^(2))/(2)dx`
`=(x^(2))/(2).lnx-(x^(2))/(4)+C`
Case II If x lt 0, then `|x|=-x`
`therefore" "int |x|ln |x| dx = - int x ln (-x) dx`
`-{ln(-x).(x^(2))/(2)-(x^(2))/(4)}+C`
`-(x^(2))/(2)ln|x|+(x^(2))/(4)+C`
Combining both cases, we get
`(1)/(2)x|x|ln|x|-(1)/(4)x|x|+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int|x|log|x|dx is equal to (xne0)

int x log x dx is equal to

int(log x)^(2)dx equals

int (ln x)/x dx

int x log x, dx

int(log x)^(2)dx equals-

int x*2^(ln(x^(2)+1))dx equals

The value of int("lnt"|x|)/(xsqrt(1+ln|x|) dx equals:

What is int ln (x^(2)) dx equal to ?

int cos(log x)dx is equal to