Home
Class 12
MATHS
if I=int(log(t+sqrt(1+t^2)))/sqrt(1+t^2)...

if `I=int(log(t+sqrt(1+t^2)))/sqrt(1+t^2)dt=1/2(g(t))^2+c` then `g(2)` is (A) `2 log(2+sqrt5)` (B) `log (2 + sqrt 5)` (C) `1/sqrt5 log (2 + sqrt5)` (D) `1/2 log ( 2 + sqrt 5)`

A

`(1)/(sqrt5)log(2+sqrt5)`

B

`(1)/(1)log(2_sqrt5)`

C

`2log(2+sqrt5)`

D

`log(2+sqrt5)`

Text Solution

Verified by Experts

The correct Answer is:
D

`intlog(t+sqrt(1+t^(2)))/(sqrt(1+t^(2)))dt=(1)/(2)(g(t))^(2)+C" …(i)"`
`"Let "l=intlog(t+sqrt(1+t^(2)))/(sqrt(1+t^(2)))dt`
`"Put "u=log(t+sqrt(1+t^(2)))`
`rArr" "du=(1)/(t+sqrt(1+t^(2)))xx(1+(1)/(2sqrt(1+t^(2)))xx2t)dt`
`rArr" "du=(1)/(t+sqrt(1+t^(2)))xx(sqrt(1+t^(2))+1)/(sqrt(1+t^(2)))dt`
`rArr" "du=(dt)/(sqrt(1+t^(2)))`
`therefore" "l=int udu`
`rArr" "l=(u^(2))/(2)+C`
`rArr" "l=(1)/(2)[log(t+sqrt(1+t^(2)))]^(2)+C" ...(ii)"`
From Eps. (i) and (ii), we get
`g(t)=log(t+sqrt(1+t^(2)))`
`therefore" "g(2)=log(2+sqrt5)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

I=int(log(t+sqrt(1+t^(2))))/(sqrt(1+t^(2)))dt=(1)/(2)(g(t))^(2)+c then g(2) is (A) 2log(2+sqrt(5)) (B) log(2+sqrt(5))(C)(1)/(sqrt(5))log(2+sqrt(5))(D)(1)/(2)log(2+sqrt(5))

int((log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))

int((log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))dx

log_((sqrt(2)+1))(sqrt(2)-1)=

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

log_((5+2sqrt(6)))(5-2sqrt(6))

(ii) log_(sqrt(5)+1)(6+2sqrt(5))

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt