Home
Class 12
MATHS
int(dx)/(e^(x)+e^(-x)+2) is equal to...

`int(dx)/(e^(x)+e^(-x)+2)` is equal to

A

`(1)/(e^(x)+1)+C`

B

`(1)/(e^(x)+1)+C`

C

`(1)/(1+e^(-x))+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

`l=int(dx)/(e^(x)+e^(-x)+2)=int(e^(x)dx)/(e^(2x)+2e^(x)+1)=int(e^(x))/((e^(x)+1)^(2))dx`
Put, `e^(x)+1=t`
`therefore" "e^(x)dx=dt`
`therefore" "l=int(dt)/(t^(2))=-(1)/(t)+C=(-1)/(e^(x)+1)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(2x))

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int(dx)/(e^(x)+e^(-x)) equals

int e^(x)dx is equal to

The value of int(dx)/((e^(x)+1)(2e^(x)+3)) is equal to