Home
Class 12
MATHS
The value of the integral int(dx)/(x^(n)...

The value of the integral `int(dx)/(x^(n)(1+x^(n))^(1//n)), n in N` is

A

`(1)/((1-n))(1+(1)/(x^(n)))^(1-1//n)+C`

B

`(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`

C

`(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`

D

`(1)/((1-n))(1-(1)/(x^(n)))^(1-1//n)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

`int(dx)/(x^(n)(1+x^(n))^(1//n))=int(dx)/(x^(n).x((1)/(x^(n))+1)^(1//n))`
`=int(dx)/(x^(n+1)((1)/(x^(n))+1)^(1//n))`
`"Put "(1)/(x^(n))+1=t`
`rArr-(n)/(x^(n+1))dx=dt`
`rArr" "-(1)/(n)int(dt)/(t^(1//n))=-(1)/(n)int t^(-1//n)dt=-(1)/(n).(t^(1-(1)/(n)))/((1-(1)/(n)))+C`
`=(1)/((1-n))(1+(1)/(x^(n)))^(1-(1)/(n))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^1 x(1-x)^n dx=

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

The value of int(dx)/(x^(n)(1+x^(n))^((1)/(n))) is equal to

Evaluate the following Integrals : int (dx)/(x(x^(n)+1))

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

The value of int(dx)/(x(x^(n)+1))