Home
Class 12
MATHS
int(sqrt(x^(2)+1))/(x^(4))dx is equal to...

`int(sqrt(x^(2)+1))/(x^(4))dx` is equal to

A

`(1)/(3)(1+(1)/(x^(2)))^(3//2)+C`

B

`(2)/(3)(1+(1)/(x^(2)))^(3//2)+C`

C

`-(1)/(3)(1+(1)/(x^(2)))^(3//2)+C`

D

`(3)/(2)(1+(1)/(x^(2)))^(3//2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{x^2 + 1}}{x^4} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] Also, we know that: \[ \sqrt{x^2 + 1} = \sqrt{\tan^2 \theta + 1} = \sqrt{\sec^2 \theta} = \sec \theta \] Now substituting these into the integral, we get: \[ I = \int \frac{\sec \theta}{\tan^4 \theta} \sec^2 \theta \, d\theta \] This simplifies to: \[ I = \int \frac{\sec^3 \theta}{\tan^4 \theta} \, d\theta \] ### Step 2: Rewrite in terms of sine and cosine Recall that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Thus, we can rewrite the integral: \[ I = \int \frac{1}{\cos^3 \theta} \cdot \frac{\cos^4 \theta}{\sin^4 \theta} \, d\theta = \int \frac{\cos \theta}{\sin^4 \theta} \, d\theta \] ### Step 3: Substitution for sine Now, let \( t = \sin \theta \). Then, \( dt = \cos \theta \, d\theta \). The integral becomes: \[ I = \int \frac{1}{t^4} \, dt \] ### Step 4: Integrate Now we can integrate: \[ I = \int t^{-4} \, dt = \frac{t^{-3}}{-3} + C = -\frac{1}{3t^3} + C \] ### Step 5: Back substitute Recall that \( t = \sin \theta \) and \( \theta = \tan^{-1}(x) \). Therefore: \[ \sin \theta = \frac{x}{\sqrt{x^2 + 1}} \] Thus, \[ t^3 = \left(\frac{x}{\sqrt{x^2 + 1}}\right)^3 = \frac{x^3}{(x^2 + 1)^{3/2}} \] Substituting back gives: \[ I = -\frac{1}{3} \cdot \frac{(x^2 + 1)^{3/2}}{x^3} + C \] ### Final Result Thus, the final result of the integral is: \[ I = -\frac{(x^2 + 1)^{3/2}}{3x^3} + C \]

To solve the integral \( I = \int \frac{\sqrt{x^2 + 1}}{x^4} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] Also, we know that: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(4)(sqrt(x^(2)-4))/(4)dx is equal to

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

" 1."int sqrt(x^(2)+a^(2))dx" is equal to "

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(sqrt(x^(2)+1)[log(x^(2)+1)-2logx])/(x^(4)) dx is equal to

int(x^(2)+1)sqrt(x+1)dx is equal to

int({x+sqrt(x^(2)+1)})/(sqrt(x^(2)+1))dx is equal to