Home
Class 12
MATHS
int(x^9)/((4x^2+1)^6) dx is equal to...

`int(x^9)/((4x^2+1)^6) dx` is equal to

A

`(1)/(5x)(5+(1)/(x^(2)))^(-5)+C`

B

`(1)/(5)(4+(1)/(x^(2)))^(-5)+C`

C

`(1)/(10x)(1+4)^(-5)+C`

D

`(1)/(10)((1)/(x^(2))+4)^(-5)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `" "l=int(x^(9))/((4x^(2)+1)^(6))dx`
`=int(x^(9))/(x^(12)(x+(1)/(x^(2)))^(6))dx=int(1)/(x^(3)(4+(1)/(x^(2)))^(6))dx`
`"Put "4+(1)/(x^(2))=t rArr -(2)/(x^(3))dx=dt`
`rArr" "(dx)/(x^(3))=-(1)/(2)dt therefore l=-(1)/(2)int(dt)/(t^(6))`
`l=-(1)/(2)xx(t^(-5))/(-5)+C rArr l=(1)/(10) t^(-5)+C`
`l=(1)/(10)((1)/(x^(2))+4)^(-5)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(9x-4x^(2)))dx is equal to

The value of int(x^(2))/(1+x^(6))dx is equal to

int(dx)/(4x^(2)-9)

int(dx)/(4x^(2)-9)

int(dx)/((9+4x^(2)))dx=?

int(x^(2))/(x^(6)+1)dx is equal to : "

int(x^(4))/(x^(2)+1)dx is equal to

int(1)/(x^(2)-9)dx is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to