Home
Class 12
MATHS
int(x-3)/((x-1)^(3)).e^(x)dx is equal to...

`int(x-3)/((x-1)^(3)).e^(x)dx` is equal to

A

`(e^(x))/((x-1))+C`

B

`(-e^(x))/((x-1)^(2))+C`

C

`(2e^(x))/((1-x)^(2))+C`

D

`(e^(x))/((x-1)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(x-3)/((x-1)^(3))e^(x)dx=int(x-1-2)/((x-1)^(3))e^(x)dx`
`=inte^(x)[(x-1)/((x-1)^(3))-(2)/((x-1)^(3))]dx`
`=inte^(x)[(1)/((x-1)^(2))-(2)/((x-1)^(3))]dx`
Let `f(x)=(1)/((x-1)^(2)) rArr f'(x)=(-2)/((x-1)^(3))`
`therefore" "l=(e^(x))/((x-1)^(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x-1)/((x+1)^(3))e^(x)dx=

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int e^(x)((x^(2)-3)/((x-1)^(2)))dx is equal to

int(x^(3))/(x+1)dx is equal to:

int(e^(x)(x-3))/((x-1)^(3))dx

int(1)/((e^(x)+e^(-x))^(2))dx is equal to

int x^(3)e^(x^(2))dx is equal to

int1/(1+e^(x))dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

int(x^(3)-1)^(1//3)x^(5)dx is equal to