Home
Class 12
MATHS
int[(x)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)-a^...

`int[(x)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)-a^(2)))]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} \, dx, \] we can follow these steps: ### Step 1: Substitution Let \( x^2 = t \). Then, \( dx = \frac{1}{2\sqrt{t}} \, dt \). ### Step 2: Rewrite the Integral Substituting \( x^2 = t \) into the integral gives: \[ I = \int \frac{\sqrt{t}}{\sqrt{t + a^2} + \sqrt{t - a^2}} \cdot \frac{1}{2\sqrt{t}} \, dt = \frac{1}{2} \int \frac{1}{\sqrt{t + a^2} + \sqrt{t - a^2}} \, dt. \] ### Step 3: Rationalization To simplify the integral, we rationalize the denominator: \[ \frac{1}{\sqrt{t + a^2} + \sqrt{t - a^2}} \cdot \frac{\sqrt{t + a^2} - \sqrt{t - a^2}}{\sqrt{t + a^2} - \sqrt{t - a^2}} = \frac{\sqrt{t + a^2} - \sqrt{t - a^2}}{(t + a^2) - (t - a^2)} = \frac{\sqrt{t + a^2} - \sqrt{t - a^2}}{2a^2}. \] ### Step 4: Substitute Back Now, substituting back into the integral, we have: \[ I = \frac{1}{2} \int \frac{\sqrt{t + a^2} - \sqrt{t - a^2}}{2a^2} \, dt = \frac{1}{4a^2} \int \left( \sqrt{t + a^2} - \sqrt{t - a^2} \right) dt. \] ### Step 5: Integrate Now we can integrate each term separately: 1. For \( \int \sqrt{t + a^2} \, dt \): \[ \int \sqrt{t + a^2} \, dt = \frac{2}{3} (t + a^2)^{3/2} + C_1. \] 2. For \( \int \sqrt{t - a^2} \, dt \): \[ \int \sqrt{t - a^2} \, dt = \frac{2}{3} (t - a^2)^{3/2} + C_2. \] ### Step 6: Combine Results Combining these results gives: \[ I = \frac{1}{4a^2} \left( \frac{2}{3} (t + a^2)^{3/2} - \frac{2}{3} (t - a^2)^{3/2} \right) + C. \] ### Step 7: Substitute Back for \( t \) Replacing \( t \) back with \( x^2 \): \[ I = \frac{1}{6a^2} \left( (x^2 + a^2)^{3/2} - (x^2 - a^2)^{3/2} \right) + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{1}{6a^2} \left( (x^2 + a^2)^{3/2} - (x^2 - a^2)^{3/2} \right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x sqrt(x^(2)-a^(2)))

int(x)/(sqrt(a^(2)-x^(2)))dx

int(dx)/(sqrt(x^(2)-9)+sqrt(x^(2)-4))=

int(dx)/(sqrt(6-x-x^(2)))

int(dx)/(sqrt(1-x-x^(2)))

int(sqrt(x^(2)-a^(2)))/(x)dx

int(dx)/(sqrt(2x-x^(2)))

int(dx)/(x+2sqrt(x))

int(dx)/(sqrt((x-1)(x-2)))

int(2)/(sqrt(x))dx