Home
Class 12
MATHS
int((1+x)sinx)/((x^(2)+2x)cos^(2)x-(1+x)...

`int((1+x)sinx)/((x^(2)+2x)cos^(2)x-(1+x)sin 2x)dx`

A

`(1)/(2)log_(e)|(sinx-(x+1)cosx-1)/(sinx-(x+1)cosx+1)|+C`

B

`(1)/(2)tan^(-1){sinx-(x+1)cosx}+C`

C

`(1)/(2)sin^(-1){sinx-(x+1)cosx}+C`

D

`(1)/(2)sin^(-1)(cosx+sinx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(1+x) \sin x}{(x^2 + 2x) \cos^2 x - (1+x) \sin 2x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator The denominator can be rewritten as: \[ (x^2 + 2x) \cos^2 x - (1+x) \sin 2x. \] We know that \(\sin 2x = 2 \sin x \cos x\), so we can substitute that in: \[ = (x^2 + 2x) \cos^2 x - (1+x)(2 \sin x \cos x). \] ### Step 2: Factor the Denominator Notice that \(x^2 + 2x = (x+1)^2 - 1\). Thus, we can rewrite the denominator as: \[ ((x+1)^2 - 1) \cos^2 x - (1+x)(2 \sin x \cos x). \] Now, let's rewrite the denominator: \[ = (x+1)^2 \cos^2 x - \cos^2 x - 2(1+x) \sin x \cos x. \] ### Step 3: Rewrite the Denominator Now we can express the denominator in a more manageable form. We will add and subtract \(\cos^2 x\): \[ = (x+1)^2 \cos^2 x - 2(1+x) \sin x \cos x - 1. \] ### Step 4: Recognize the Form The denominator can be recognized as a difference of squares: \[ = ((x+1) \cos x - \sin x)^2 - 1. \] ### Step 5: Substitute Let \[ t = (x+1) \cos x - \sin x. \] Then, the differential \(dt\) can be computed as follows: \[ dt = [\cos x - (x+1) \sin x] \, dx. \] ### Step 6: Rewrite the Integral Now we can rewrite the integral \(I\): \[ I = \int \frac{(1+x) \sin x}{t^2 - 1} \, dx. \] We can express this as: \[ I = \int \frac{(1+x) \sin x}{(t-1)(t+1)} \, dx. \] ### Step 7: Use Partial Fraction Decomposition We can use partial fractions to split the integral: \[ \frac{(1+x) \sin x}{(t-1)(t+1)} = \frac{A}{t-1} + \frac{B}{t+1}. \] ### Step 8: Integrate Integrating each term separately gives us: \[ I = \frac{1}{2} \log \left| \frac{t-1}{t+1} \right| + C. \] ### Step 9: Substitute Back Finally, substitute back \(t = (x+1) \cos x - \sin x\): \[ I = \frac{1}{2} \log \left| \frac{(x+1) \cos x - \sin x - 1}{(x+1) \cos x - \sin x + 1} \right| + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{1}{2} \log \left| \frac{(x+1) \cos x - \sin x - 1}{(x+1) \cos x - \sin x + 1} \right| + C. \]

To solve the integral \[ I = \int \frac{(1+x) \sin x}{(x^2 + 2x) \cos^2 x - (1+x) \sin 2x} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cos^(2)x))dx

int( sin 2x)/(1-cos^(2)x)dx

int((1)/(cos^(2)x)-(1)/(sin^(2)x))dx

int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx

int(sin2x)/(1+cos^(2)x)dx=

int(sinx)/(1+cos^2x)dx

int(sinx)/(1-sin^(2)x)dx=

int(sinx)/((1+cos x)^(2))dx=

int(sin2x)/(1+cos^(2)x)dx

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to