Home
Class 12
MATHS
intcos2thetalog((costheta+sintheta)/(cos...

`intcos2thetalog((costheta+sintheta)/(costheta-sintheta))=`

A

`(cos theta-sintheta)^(2)log((cos theta+sin theta)/(cos theta-cos theta))+C`

B

`(cos theta+sin theta)^(2)log((cos theta+sin theta)/(cos theta-sin theta))+C`

C

`((cos theta-sin theta)^(2))/(2)log((cos theta-sin theta)/(cos theta+sin theta))+C`

D

`(1)/(2)sin 2 theta log tan ((pi)/(4+theta)-(1)/(2)log sec 2 theta +C`

Text Solution

Verified by Experts

The correct Answer is:
D

Since, `log((cos theta + sin theta)/(cos theta - sin theta))=log tan ((pi)/(4)+theta)`
`"and "int sec theta d theta = log tan((pi)/(4)+(theta)/(2))`
`rArr" "int sec 2 theta d theta =(1)/(2)log tan ((pi)/(4)+theta)`
`" "2sec 2 theta=(d)/(d theta)log tan ((pi)/(4)+theta)`
By integration by parts
`therefore" "l=(1)/(2)sin 2 theta log tan ((pi)/(4)+theta)-int tan 2 theta d theta`
`=(1)/(2)sin 2 theta log tan ((pi)/(4)+theta)-(1)/(2)log sec 2 theta +C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If tantheta=(a)/(b) ,then find the value of (costheta+sintheta)/(costheta-sintheta) .

(costheta*csctheta-sintheta*sectheta)/(costheta+sintheta)

Eliminate theta in the following (i) 2sintheta=x, 3costheta=y (ii) costheta + sintheta=x, costheta-sintheta=y

If 5 tan theta =4, " write the value of " ((costheta- sintheta ))/((costheta+ sintheta)).

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

sintheta+costheta=sqrt(2)

Show that every real orthogonal matrix is of any one of the forms {:[(costheta,-sintheta),(sintheta,costheta)]:}or{:[(costheta,sintheta),(sintheta,-costheta)]:}

Simplify : 1/( Costheta Sintheta ) + ( Costheta Sintheta )/( CosthetaSintheta )

Evaluate costheta.costheta+sintheta.sintheta

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)