Home
Class 12
MATHS
inte^(e^(e^(x))).e^(e^(x)).e^(x)dx=....+...

`inte^(e^(e^(x))).e^(e^(x)).e^(x)dx=....+C`

A

`e^(e^(x))`

B

`(1)/(2)e^(x).e^(x)`

C

`e^(e^(e^(x)))`

D

`(1)/(2)e^(e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{e^{e^x}} \cdot e^{e^x} \cdot e^x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral Let: \[ I = \int e^{e^{e^x}} \cdot e^{e^x} \cdot e^x \, dx \] ### Step 2: Substitution We will use substitution to simplify the integral. Let: \[ t = e^{e^x} \] Then, we need to find \( dt \). First, we differentiate \( t \): \[ \frac{dt}{dx} = e^{e^x} \cdot e^x \] This implies: \[ dt = e^{e^x} \cdot e^x \, dx \] ### Step 3: Rewrite the Integral Now, we can rewrite the integral \( I \) in terms of \( t \): \[ I = \int e^{t} \, dt \] ### Step 4: Integrate The integral of \( e^t \) is: \[ I = e^t + C \] ### Step 5: Substitute Back Now, we substitute back \( t = e^{e^x} \): \[ I = e^{e^{e^x}} + C \] ### Final Answer Thus, the value of the integral is: \[ \int e^{e^{e^x}} \cdot e^{e^x} \cdot e^x \, dx = e^{e^{e^x}} + C \] ---

To solve the integral \( \int e^{e^{e^x}} \cdot e^{e^x} \cdot e^x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral Let: \[ I = \int e^{e^{e^x}} \cdot e^{e^x} \cdot e^x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(e^(x))/(e^(x)+e^(-x))dx

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

inte^(x)(e^(x)-e^(-x))dx=

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int(e^(e^x)e^(x)+x)dx=

int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx

int (e^(x))/(e^(x) + e^(-x))dx

inte^x/(e^x+e^(-x))dx

int (e^(2x) +e^(-2x))/(e^(x)) dx