Home
Class 12
MATHS
intx^(51)(tan^(- 1)x+cot^(- 1)x)dx=...

`intx^(51)(tan^(- 1)x+cot^(- 1)x)dx=`

A

`(x^(52))/(52)(tan^(-1)x+cot^(-1)x)+C`

B

`(x^(52))/(52)(tan^(-1)x-cot^(-1)x)+C`

C

`(pix^(52))/(104)+(pi)/(2)+C`

D

`(x^(52))/(52)+(pi)/(2)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

`intx^(51)(tan^(-1)x+cot^(-1)x)dx`
`=intx^(51).(pi)/(2)dx=(pix^(52))/(104)+C=(x^(52))/(52)(tan^(-1)x+cot^(-1)x)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int x^(51)(tan^(-1)x+cot^(-1)x)dx=

cot(tan^(-1)x+cot^(-1)x)

int(tan^(-1)x cot^(-1)x)/(1+x^(2))dx

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is____.

int(tan^(-1)x+cot^(-1)x)/(1+x^(2))dx

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x), find (dy)/(dx)]_(x=-1)0(b)1(c)2/ pi(d)-1

l=int_(-2)^(1)(tan^(-1)x+"cot"^(-1)(1)/(x))dx is equal to

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))