Home
Class 12
MATHS
int("cosec x")/(cos^(2)(1+log tan.(x)/(2...

`int("cosec x")/(cos^(2)(1+log tan.(x)/(2)))dx` is equal to

A

`sin^(2)[1+log tan.(x)/(2)]+C`

B

`tan[1+log tan.(x)/(2)]+C`

C

`sec^(2)[1+log tan.(x)/(2)]+C`

D

`-tan[1+log tan.(x)/(2)]+C`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `l=int("cosec x")/(cos^(2)(1+log tan.(x)/(2)))dx`
Put `1+log tan.(x)/(2)=t`
`rArr (1)/(tan.(x)/(2)).sec^(2).(x)/(2).(1)/(2)dx=dt rArr" cosec x dx = dt "` ltBrgt `therefore" "l=int(dt)/(cos^(2)t)=int sec^(2)t dx=tant+C`
`=tan(1+log tan.(x)/(2))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x(1+log x)^(2))dx is equal to

int(1)/(cos^(2)x(1-tan x)^(2))dx

int cos x log tan((x)/(2))dx

int x.2^(ln(x^(2)+1))dx is equal to

int (cos ecx) / (log (tan ((x) / (2)))) dx

Evaluate: int(cos ecx)/(log tan((x)/(2)))dx

int_(1)^(x) (log(x^(2)))/(x) dx is equal to

int(cos^(2) (log .x))/(x)dx

int(1)/(x cos^(2)(1+log x))dx