Home
Class 12
MATHS
intx(x^x)^x(2logx+1)dx=...

`intx(x^x)^x(2logx+1)dx=`

A

`(x^(x))^(x)+C`

B

`x^(x)+C`

C

`x^(logx)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=intx(x^(x))^(x)(2log x+1)dx`
`"Let "(x^(x))^(x)=t, x^(2)log x= log t`
`rArr" "(x^(2).(1)/(x)+2xlogx)d=(1)/(t)dt`
`rArr" "x(1+2logx)dx=(1)/(t)dt`
`therefore" "l=int t.(1)/(t)dt= t +C=(x^(x))^(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x^(x))^(2)(1+logx)dx=

intx^x(1+logx)dx

∫ x^2 logx dx

int7^(x logx)(1+logx)dx=

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

intx/x^-3dx

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

intx/(2x+1)dx