Home
Class 12
MATHS
int tan(sin^(-1)x)dx is equal to...

`int tan(sin^(-1)x)dx` is equal to

A

`(1)/(sqrt(1-x^(2)))+C`

B

`sqrt(1-x^(2))+C`

C

`(-x)/(sqrt(1-x^(2)))+C`

D

`(x)/(sqrt(1-x^(2)))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan(\sin^{-1} x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \tan(\sin^{-1} x) \, dx \). ### Step 2: Use the Identity for Tangent Using the identity \( \tan(\sin^{-1} x) = \frac{x}{\sqrt{1 - x^2}} \), we can rewrite the integral: \[ I = \int \frac{x}{\sqrt{1 - x^2}} \, dx \] ### Step 3: Substitution Let \( t = 1 - x^2 \). Then, differentiating gives: \[ dt = -2x \, dx \quad \Rightarrow \quad x \, dx = -\frac{1}{2} dt \] Now, we need to express \( \sqrt{1 - x^2} \) in terms of \( t \): \[ \sqrt{1 - x^2} = \sqrt{t} \] ### Step 4: Substitute in the Integral Substituting these into the integral, we have: \[ I = \int \frac{x}{\sqrt{1 - x^2}} \, dx = \int \frac{-\frac{1}{2} dt}{\sqrt{t}} = -\frac{1}{2} \int t^{-1/2} \, dt \] ### Step 5: Integrate Now we can integrate: \[ -\frac{1}{2} \int t^{-1/2} \, dt = -\frac{1}{2} \cdot 2 t^{1/2} + C = -\sqrt{t} + C \] ### Step 6: Substitute Back Now we substitute back \( t = 1 - x^2 \): \[ I = -\sqrt{1 - x^2} + C \] ### Final Answer Thus, the integral \( \int \tan(\sin^{-1} x) \, dx \) is: \[ I = -\sqrt{1 - x^2} + C \] ---

To solve the integral \( \int \tan(\sin^{-1} x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral Let \( I = \int \tan(\sin^{-1} x) \, dx \). ### Step 2: Use the Identity for Tangent Using the identity \( \tan(\sin^{-1} x) = \frac{x}{\sqrt{1 - x^2}} \), we can rewrite the integral: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan(sin^(-1)x)dx is equals

int_(0)^(1)tan(sin^(-1)x)dx equals

int_(0)^(1)tan(sin^(-1)x)dx equals

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int(1)/(1+3 sin ^(2)x)dx is equal to