Home
Class 12
MATHS
The value of int(x^(2)+1)/(x^(4)-x^(2)+1...

The value of `int(x^(2)+1)/(x^(4)-x^(2)+1)dx` is

A

`tan^(-1)(2x^(2)-1)+C`

B

`tan^(-1)(x^(2)+1)/(x)+C`

C

`sin^(-1)(x-(1)/(x))+C`

D

`tan^(-1)((x^(2)-1)/(x))+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(x^(2)+1)/(x^(4)-x^(2)+1)dx=int(1+(1)/(x^(2)))/(x^(2)+(1)/(x^(2))-1)dx`
`l=((1+(1)/(x^(2))))/((x-(1)/(x))^(2)+1)dx`
`"Put "x-(1)/(x)=t rArr (1+(1)/(x^(2)))dx=dt`
`therefore" "l=int(dt)/(t^(2)+1)tan^(-1)t+C = tan^(-1)(x-(1)/(x))+C`
`=tan^(-1)((x^(2)-1)/(x))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(x^(4)-1)dx

The value of int(x^(2)-1)/(x^(4)+1)dx is

The value of int(x^(2)+1)/(x^(2)-1)dx is

int(x^(2))/(1-x^(4))dx

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

Value of int (x ^(2) + 1)/((x -1) (x-2)) dx is

int(x^(4)+1)/(x(x^(2)+1)^(2))dx

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is