Home
Class 12
MATHS
Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, ...

Let `f(x)=(sin^(2)pix)/(1+pi^(x)).` Then, `int[f(x)+f(-x)]dx` is equal to

A

0

B

`(1)/(2)x-(sin 2pix)/(4pi)+C`

C

`(x)/(2)-(cospix)/(2pi)+C`

D

`(1)/(1-pi^(x)).(cos^(2)pix)/(2pi)+C`

Text Solution

Verified by Experts

The correct Answer is:
B

(b) `f(x)+f(-x)=(sin^(2)pix)/(1+pi^(x))+(sin^(2)(-pix))/(1+pi^(-x))`
`=(sin^(2)pix)/(1+pi^(x))+((sin^(2)pix)pi^(x))/(pi^(x)+1)`
`=sin^(2)pix=(1-cos 2pix)/(2)`
`therefore int[f(x)+f(-x)]dx=int[(1-cos 2pix)/(2)]dx`
`=(1)/(2)xx-(sin 2pix)/(4pi)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to