Home
Class 12
MATHS
int cos^(-3//7)x sin^(-11//7)x dx is equ...

`int cos^(-3//7)x sin^(-11//7)x dx` is equal to

A

`log|sin^(4/7)x|+C`

B

`(4)/(7)tan^(4//7)x+C`

C

`-(7)/(4)tan^(-4//7)x+C`

D

`log|cos^(3//7)x|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^{-\frac{3}{7}}(x) \sin^{-\frac{11}{7}}(x) \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We can rewrite the integral in a more manageable form. We will express the integral as: \[ \int \frac{1}{\cos^{\frac{3}{7}}(x) \sin^{\frac{11}{7}}(x)} \, dx \] ### Step 2: Multiply and Divide by a Suitable Factor To simplify the integral, we can multiply and divide by \( \cos^{-\frac{11}{7}}(x) \): \[ \int \frac{\cos^{-\frac{11}{7}}(x)}{\cos^{-\frac{3}{7}}(x) \sin^{-\frac{11}{7}}(x) \cos^{-\frac{11}{7}}(x)} \, dx \] This gives us: \[ \int \frac{\cos^{-\frac{11}{7}}(x)}{\sin^{-\frac{11}{7}}(x)} \cdot \frac{1}{\cos^{-\frac{3}{7}}(x)} \, dx \] ### Step 3: Use Trigonometric Identities Now we can use the identity \( \tan(x) = \frac{\sin(x)}{\cos(x)} \) to rewrite the integral: \[ \int \tan^{\frac{11}{7}}(x) \cdot \sec^{\frac{3}{7}}(x) \, dx \] ### Step 4: Make a Substitution Let’s make the substitution \( u = \tan(x) \), which gives us \( du = \sec^2(x) \, dx \) or \( dx = \frac{du}{\sec^2(x)} \). Since \( \sec(x) = \sqrt{1 + \tan^2(x)} = \sqrt{1 + u^2} \), we can rewrite the integral in terms of \( u \): \[ \int u^{\frac{11}{7}} \cdot (1 + u^2)^{\frac{3}{14}} \, du \] ### Step 5: Solve the Integral This integral can now be solved using integration techniques such as integration by parts or substitution depending on the complexity. ### Step 6: Back Substitute After solving the integral in terms of \( u \), we will back substitute \( u = \tan(x) \) to express our final answer in terms of \( x \). ### Final Answer The final answer will be in the form of: \[ \text{Result} + C \] where \( C \) is the constant of integration. ---

To solve the integral \( \int \cos^{-\frac{3}{7}}(x) \sin^{-\frac{11}{7}}(x) \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We can rewrite the integral in a more manageable form. We will express the integral as: \[ \int \frac{1}{\cos^{\frac{3}{7}}(x) \sin^{\frac{11}{7}}(x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int cos^(-(3)/(7))x sin^(-(11)/(7))xdx

int cos^(7) x dx

int (2x+7)^6 dx is equal to:

int((sec^(2)x-7))/(sin^(7)x)dx is equal to (i) (tan x)/(sin^(7)x)+C (ii) (cos x)/(sin^(7)x)+C( iii) (sin x)/(cos^(7)x)+C( iv )(sin x)/(tan^(7)x)+C

int sin^(3)x cos^(3)x dx is equal to

int cos^(3)x.e^(log(sin x)) dx is equal to

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to