Home
Class 12
MATHS
intsqrt(e^(x)-1)dx is equal to...

`intsqrt(e^(x)-1)dx` is equal to

A

`2[sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)]+C`

B

`sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)+C`

C

`sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)+C`

D

`2[sqrt(e^(x)-1)+tan^(-1)sqrt(e^(x)-1)]+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `l=int sqrt(e^(x)-1)dx=int((sqrt(e^(x)-1))e^(x))/(1+(sqrt(e^(x)-1))^(2))dx`
`"Put "e^(x)-1=t^(2)" "rArr" "e^(x)dx=2t dt`
`therefore" "l=2int(t^(2)dt)/(1+t^(2))=2 int ((1+t^(2))/(1+t^(2)))dt-2int(1)/(1+t^(2))dt`
`=2 [t-tan^(-1)t]+C`
`=2[sqrt(e^(x)-1)-tan^(-1)sqrt(e^(x)-1)]+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

intsqrt(e^(x))dx=?

intsqrt(1+x^(2)) dx is equal to

intsqrt(x)/(x-1)dx

intsqrt(x^(2)-2)dx

intsqrt(x^(2)-5)dx

intsqrt((x-1)/(x+1))dx is equal to

intsqrt(x^(2)+2x+5)dx is equal to

The value of intsqrt(1+sec x)dx is equal to

intsqrt(x/(1+x))dx

intsqrt(x^(2)+x)dx